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NONLINEAR  ACTUATOR  DISK  THEORY  AND  FLOW  FIELD  CALCULATIONS, 

INCLUDING  NONUNIFORM  LOADING 

By  Michael D. Greenberg"  and  Stephen R.. Powers 
Sage  Action,  Inc. 

SUMMARY 

The axisymmetric  flow  induced by an actuator  disk  with  prescribed  non- 

uniform  circulation  distribution  is  considered.  Coupled,  nonlinear,  singular 

integral  equations  governing  the  wake  geometry  and  vortex  density  are  de- 

veloped  from  the  force-free  condition  and  discussed  from  physical  and 

mathematical  points of view.  An  iterative  solution  based  partly on the 

method of successive  approximations  and  partly on the  Newton-Raphson  method 

is  put  forward,  together  with  convergent  numerical  results  for  illustrative 

cases,  both  static  and  nonstatic.  Corresponding  detailed  flow  field  calcu- 

lations  are  included. 

INTRODUCTION 

The increasing  importance  of  "nonclassical"  propeller  theory  over  the 

past  decade  has led to  the  development  of  a  substantial  research effort, 

encompassing  sophisticated  mathematical  models,  performance  tests  and  flow 

visualization  studies,  e.g.  see Ref. 1. At the  recent  Third  CAL/AVLABS 

Symposium,  a  comprehensive  bibliography  to  earlier  work  was  given  in  a  paper 

by J. C. Erickson,  Jr.  (Ref. 2) . 
Most of the  theoretical  effort  to  date by others  has  been  directed 

toward  the  development of finite-bladed  models.  In  contrast,  we  have  con- 

centrated on the  case of infinite  blade  number,  that is, the  actuator  disk 

model.  This  model, of course,  suffers  from  a  number of inherent  physical 

limitations.  Two of these  limitations will become  clearer  later on. One 

concerns  the  possibility  of  reverse  flow at the  blade  tip  and  the  other,  the 

relationship of the  resultant  flow  field to the  mean or zeroth  harmonic of the 

finite-bladed  flow  field. 

* Now Assistant  Professor,  University Of Delaware,  Dept.  of  Mechanical and 
Aerospace  Engineering,  and  Staff  Consultant  to  SAI. 
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On the  other  hand, the actuator  disk  model  enjoys  a  substantial  advantage 

in its  relative  simplicity.  This  greatly  facilitates  the  derivation  of  both 

qualitative and  quantitative  information  about  the  flow  field,  particularly 

the  flow  field  external  to  the  slipstream. As a  result,  it  should  prove  to 

be  a  basic  building  block of understanding in the  static  and  low  speed  regime, 

somewhat  the  same as it  has  for  light  loading  in  forward  flight. 

L i n e a h  theory  for  the  actuator  disk  model  has  been  established  for  some 

time, e.g.  see  Ref. 3 .  However,  the  first  important  paper on the n o n e i n e a 4  

theory  did  not  appear  until 1962 by T. Y. Wu. In Ref. 4 ,  he  formulated  the 

boundary  value  problem  very  elegantly  and  proposed  an  iterative  scheme  for 

its  solution. As far  as  we know, this  solution  has not been  completed. 

Further  work  has  been  done by others  along  the  lines  of  Wu's  formulation. 

One  analysis  not  reviewed  in  Ref. 2 is  the  analysis by B. W. Cox  (Ref. 5) who 

used  discrete  vortex  rings.  Rather  than  concentrate on the  details  €or  static 

and  low  speed  operation  explicitly,  he  turned  his  attention  to  approximations 

for  a  number  of  other  complications,  such  as  a  nonuniform  free  stream  and 

wind  tunnel  wall  interference. 

In  our  first  investigation  of  a  nonlinear  actuator  disk  theory  (Ref. 6 ) ,  

we  confined  our  efforts  to  the  simplest  case  of  a  prescribed u n i d o 4 m  circu- 

lation  distribution.  Taking  an  approach  somewhat  different  than Wu's,  we 

developed an equivalent  vortex  model.  With  this model, converged  solutions 

were  obtained  for  operation  anywhere  between  the  static  condition  and  cruise. 

The  present  study is, principally,  an  extension  of  the  analysis  of  Ref. 6 

to  the  more  practical  case  of  a n o n u n i d o h m  circulation  distribution,  which is 

approximated by a  piecewise  constant  distribution.  At  the  same  time,  though, 

a  new  and  more  physical  derivation  of  the  governing  equations  has  been  de- 

rived  and  significant  improvements  have  been  incorporated  into  the  numerical 

analysis. 

The authors  would  like  to  express  their  thanks  to Dr. D. E. Ordway  of 

SAI for  his  encouragement  and  helpful  advice  throughout  the  course  of  this 

work. 
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PRINCIPAL  NOMENCLATURE 

C 
j 

cT 
D 

f 
j 

Fk 

gk j 

G 

K 

M 

N 

9 

Q i 4  
R 

Rk 
S 

S 

coefficients in representation  of  vortex  density  for k 
vortex  tube 

coefficients in representation  of  the  shape  of  the kth vortex 
tube 

coefficients in GT,  see Eqs. (14) and (15) 

exponents  in  matching  functions  g 

thrust  coefficient  referenced  to  F(QR) ( K R  ) 

slipstream  region 

matching  functions  for  vortex  tube  shapes,  see  Eqs.  (30) 
and  (32) 

twice  the right hand  side  of Eq. ( 2 4 )  

matching  functions  for  vortex  density  of  the kth vortex  tube, 
see  Eqs.  (31)  and  (33) 

Green's  function  for  governing  partial  differential  equation 
on Y 

aG/aT 

th 

k j  
2 2  

shorthand  for GT(E,,tv;x,Tk) 

unit  vectors  in  the r,  x, ... directions,  respectively 
matching  function  index, e.g. see  Eqs.  (30) - (33) 

index  to  distinguish  the  K  different  vortex  tubes 

total  number of vortex  tubes or, equivalently,  the total 
number  of  steps  in  the  piecewise  constant  circulation 
distribution 

number  of  axial  stations  used  in  the  stream  function 
interpolation 

number  of  collocation  points  used  in  solving  for  the  vortex 
density on the  Kth  vortex  tube 

number  of  collocation  points  used in solving  for  the  vortex 
density on the  vortex  tubes k = 1 through ( K - 1 )  

number of blades 

fluid  velocity,  (u + v + w )' 

Legendre  functions  of  second  kind  and  degree +4 

propeller  radius 

radial  location  of  the kth step  in  circulation  distribution 

meridional  coordinate,  see  Fig. 3b 

slipstream  surface,  see  Fig.  3a 

2 2 2  
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tt T radius of Kth vortex tube, with  arguments 5 and x, 
respectively 

radius of kth  vortex  tube , with  arguments 6 and x, 
respectively tk'  Tk 

UIVfW x,r,e  velocity  components 

u' ,VI  ,w'  x,r,e perturbational  velocity  components 

U k axial  velocity on the kth vortex  tube,  see Eq. (25) 

U free-stream  speed 

x,r,0  cylindrical  coordinate  system,  see  Fig. 1 

a v r  6, 

Y I  Y, vortex  density on S for  constant  r(r);  circulation  per  unit 

axial  stations  used in solving  for  the  vortex  densities 

x-length  and  s-length,  respectively 

vortex  density  on kth vortex  tube;  circulation  per  unit 
x-length  and  s-length,  respectively 'kt  'sk 

r (r)  circulation  distribution 

'k piecewise  constant  circulation  distribution 

axial  stations  used  in  stream  function  interpolation 
& V  

5 meridional  velocity,  (u2 + v2) ' 
A advance  ratio, U/RR 

V dummy  index  for  k  in  tk  and  yk 

S I P  dummy  x,r  variables,  respectively 

P fluid  mass  density 

Y stream  function 

N 

- w fluid  vorticity  vector  with  components W ~ , W ~ , W ~  in 
s,n,8 directions,  respectively 

" N w, wl, w 2  Legendre  function  arguments,  see Eq. (6) and  pp. 10 and 54 

n propeller  rotational  velocity,  radians  per  unit  time 

( )x 

( ) m  asymptotic  value  at  x = m 

subscripted  variable  denotes  partial  differentiation  with 
respect  to  that  variable 

( ) nth  iterate 

v 4  shorthand  for [l + (dT/dx) 2 ]  ', i .e. ds/dx 

NOTE: Prior to Eq. ( 2 3 ) ,  all  quantities  are  in d i m e n h i o n a l  form. 
Starting with Eq. ( 2 3 ) ,  they  are all nondimenhionalized as 
follows: lengths  with  respect  to R; velocities,  y  and y, with 
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respect  to  RR; r with  respect  to RR ; and Y with  respect  to RR . 
tlowevek, do& n o t a t i o n a l  o i m p l i c i t y  we o m i t  a n y  explicit heminde& 
06 n o n d i m e n b i o n a l i z a t i o n ,  nuch  an phimeb otr a n t e k i n k n .  

2 3 

THEORETICAL  DEVELOPMENT 

Problem . .  Statement  And  Formulation.  Let  us  consider  a  propeller of blade 

radius R, operating  with  angular  velocity R relative  to  a  uniform  free  stream 

U 2 0. With  the  blade  circulation  distribution  prescribed,  our  objective  is 

the  calculation of the  induced  flow  field. 

We  consider  the  blade  number to.be infinite,  the  so-called  "actuator disk" 

model,  and  view  the  steady  axisymmetric  flow  from  a  Newtonian  x,r,e  coordinate 

system;  see  Fig. 1 in  which we have  sketched one of  the  infinitely  many  blades. 

Figure 1. Coordinates  And  Geometry 

The  flow  field,  assumed  to  be  inviscid  and  incompressible,  is  defined by 

the  x,r,e  velocity  components u,v,w respectively, or equivalently, by w  and 

a  stream  function Y ,  such  that 

u = u + u t  = Yr/r (1) 

where  the  primed  terms  are  perturbational  quantities  and  the  subscripts 

indicate  partial  differentiation. 
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It has  been  shown by Wu  (Ref. 4 )  that Y must  satisfy  the  nonlinear 

partial  differential  equation 

Yrr - Yr / r + Yxx = - (Qr + wr) d(wr)/dY 2 
( 3 )  

An  alternative  derivation  to Eq. ( 3 )  is  based on the  calculation of the  cir- 

culation  about  an  elemental  meridional  area  dxdr  in  two  different  ways.  That 

is,  on the  one  hand, it may  be  computed  from  Stokes'  Theorem as the 8 component 

of vorticity, (vx-ur), times  the  area  dxdr or,  on the  other  hand,  as  the  line 

integral of "9.d~" around  the  circumference  of  the  element.  Equating  these 

two  results  produces Eq. (3). The details  are  given  in  Appendix A.l . 
The  quantities  wr  and  d(wr)/dY on the  right  hand  side  cause  considerable 

complication  since  the  functional  dependence  wr = f(Y)  is  not  known  a  priori. 

(We d o  know wr  for x = 0 and 0 < r < R  since  the  circulation  distribution 

T(r) = - 2nwr  is  prescribed  there,  but  we do n o t  know wr as a  function  of Y 

throughout  the  field.)  Whereas  Kelvin's  Theorem  implies  that  f(Y) = 0 outside 

the  slipstream  region Dl we do not know the  shape  of D at  the  outset. 

+ 

Due  to  these  complications,  an  analytical  solution of the  resulting 

nonlinear  free-boundary  problem  seems  to  be out  of the  question  and  we 

choose  instead  to  pursue  an  iterative  approach.  Toward  this end, it  is 

helpful  to  first  recast  Eq. (3) in  the  form  of  an i n t e g h a l  equation,  which 

can be  expected  to  be  more  amenable  to  numerical  solution.  This  has  already 

been  done  (Refs. 4 and 5) and  the  resulting  integral  equation  can  be  expressed 

in  the  form, 

Y(x,r) = Ur /2 + // G(<,p;x,r) (Rp+w) d(wp)/dY dpd< 
D 

The Green's  function, 

may  be  identified as the  stream  function  at  a  field  point  (x,r,8)  due  to  a 

ring  vortex  of  unit  strength,  oriented  as  shown  in  Fig. 2 , where Q, (z) is  a 
Legendre  function  of  second  kind  and  degree 4 ,  with  argument 

a 

N 

w = 1 + [(<-x) + (p-r) I /2pr 2 2 
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Figure 2. Interpretation Of The  Green's  Function 

Recall  that  we  mentioned  that  the  flow  field  is  completely  determined by 

the  stream  function  Y(x,r) and the  tangential  velocity  field  w(x,r).  Once Y 

is  calculated  from  Eq. ( 4 ' ) ,  w  can be  found  throughout D by application  of 

Kelvin's  Theorem.  The  hard  part,  of  course,  is  the  calculation  of Y .  Thi 

will be  the  subject of the  following  sections. 

Vortex  Model.  Whereas Wu deals  with  Eq. (4) directly,  we  elected to 

S 

work 

with an equivalent  vortex  model  and  limit  our  attention  to  piecewise  constant 

blade  circulation  distributions.  That i s ,  we  prescribe  constants R1, ..., RK 
and T l ,  ..., rK such  that  T(r) = Tk over  R < r < R k ,  where Ro = 0 and 

RK = R. Consequently, d(wr)/dY  is  zero  everywhere  in D, except on the  stream- 

tubes, or vortex tubes, which  pass  through x = 0, R = R1, ..., R K .  On these 

streamtubes,  it  has  a  delta  function  type  behavior.  The p integration  thus 

reduces  to  a  finite  summation  over  the  discrete  vortex  tubes  and  Eq. (4) may 

be  re-expressed  formally  as 

k-1 

where tk = tk ( 5 )  and yk = yk ( 5 )  are  the  radius  and  circulation  per  unit 

E-length,  respectively, of the kth vortex  tube.  Our  objective , then,  is  the 
calculation  of  the  unknown  "shapes" tk(6)  and  "vortex  densities"  yk ( 6 ) .  

At this  point, we would  like  to  relate  the  local  disk  loading  to  the 

circulation  distribution.  If we refer  to  the  analysis of Ref. 7, we  see  that 
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the  radial  distribution of circulation will be  essentially  proportional  to  the 

radial  distribution of annulus or local  disk  loading.  The  local  disk  loading, 

of  course,  varies as the  blade  loading  divided  by r. 

Force-Free  Condition.  Whereas  the  boundary  value  problem on Y(x,r) is 

completely  contained  in Eq. ( 4 ) ,  the  unknown  tk(c)'s  and  yk(c)'s are n o t  

determined  by Eq. (7) because we have, in going  from  Eq. ( 4 )  to  Eq. ( 7 ) ,  

taken  certain  terms  defined  in  terms  of '4 and  simply  called  them  yk(c). This, 

in effect,  introduced  additional  unknowns. 

In order  to  obtain  a  sufficient  number  of  equations,  it  is  necessary  to 

impose  the  physical  condition  that  the  trailing  vorticity  drifts  force-free. 

More  specifically,  the  trailing  vortices  must  be a l i g n e d  W i t h  A t h e a m l i n e n  if 

the  Kutta-Joukowski  forces on them  are  to  be  precluded.  It can,  in fact,  be 

verified  that  this  is j u s t  the  information  that  was  "lost"  above. 

Since  the  extension to the  piecewise  constant  case  can  be  accomplished 

easily,  let  us  first  consider  the  case  where r(r) is  a  constant,  say r .  The 

vortex  system  then is as  sketched  in  Fig.  3a. It consists  of  an  infinite 

Figure 3 .  Vortex  System  For  Constant  T(r) 

number  of  radial  vortex  lines  which  represent  the  blades,  not  shown here, 

together  with  an  equal  number of distorted  helical  vortices  trailing  from  the 

blade  tips  and  a  concentrated "hub" vortex  of  strength r on  the  positive 
x  axis. All of these  vortices  are  to  be  force-free  except,  of  course,  the 



radial or bound  blade  vortices. 

As shown in Fig. 3b, the  trailing  vorticity  may  be  decomposed  into an 

equivalent  orthogonal  system  consisting of ring  vortices  plus  vortices  lying 

along  the  intersection  of  the  slipstream  surface S and  the  meridional  planes 

of  constant 8. Let the  ring  vortices  be  of  strength y, per  unit  s-length or, 

alternatively, y per  unit  x-length.  From  conservation of vorticity we see 

that  the  strength of  the meridional  vorticity is equal  to r divided by the 
local  circumference,  or r/27rt per  unit  tangential  length  as  indicated. 

Alignment of the  trailing  vorticity  with  the  streamlines  requires,  first, 

that  the  velocity  component notmall to S be  zero  everywhere on this  surface,  or* 

and, second,  that 

(r/2nT) / Y, = C / (QT + w) ( 9 )  

on  r = T  (x) I where 5 is  the  meridional  velocity  component (u2 + v ) . Since 

y 5 = yu  and  w(T) = [w(T+O)  +w(T-0)]/2 = (0 - I'/2~rT)/2~ the  condition  of  Eq. (9) 

becomes 

2 4  

s 

YU = RT/~T - r 1 8 ~  T 2 2 2  
( 1 0  1 

on r = T(x). Thus, if we substitute  u = Yr /I, we  have  finally 

Y [u + +Jam GT(clt;x,T) y dc = Qr/2~ - r2/8n2T2 1 
on r = T(x),  where  the  integral  is  to  be  evaluated  in  the  Cauchy  principal 

value  sense. 

We  now  see  that  the  coupled,  singular,  nonlinear  integral  equations  of 

Eqs. ( 8 )  and (11) suffice  to  determine  the  two  unknowns,  T(x)  and y(x). The 

kernels  are as follows.  For  Eq.  (8) , we have  from Eq. (5) 

* It will  be  convenient  to  express  the  slipstream  radius  as  t or T  depending 
on whether  the  argument is the  integration  variable 5 or the  field  point x, 
respectively. 

9 
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where zl is identical to z ,  with p and r replaced by t and T, respectively. 

Using  the relation, 

we find  for  Eq. (11) , 

where  A and B  are  given by, 

A = [T2 - t2 + (<-x) 2] / 8 ~ -  

B = [t2 - T2 + (E-x)'] / 8.rr 

As we said, satisfaction  of  Eq. (8) precludes any flow notrmae to S ,  

and hence any Kutta-Joukowski  forces  directed t a n g e n t  to  that  surface.  Align- 

ment of  the  vorticity  and  velocity  vectors on s ,  guaranteed by Eq. (ll), 

further  precludes  any  Kutta-Joukowski  forces  directed nohmae to that  surface. 

Thus, Eq. (11) must be equivalent  to  the  statement  that  the  pressure dif- 

ference  across S is  zero and  this  equation  could  have  been  derived by appli- 

cation  of  Bernoulli's  Equation.  A  derivation  along  these  lines can be  found 

in Ref. 6. 

Notice  that  insofar  as  the two governing  equations  are concerned, the 

effect  of swirl, i.e.,  the  induced  tangential  velocity, is limited  to  the 

presence  of  the  second  term  in  the  right  hand  side  of  Eq. (10). Since, for 

r's and R ' s  within  the range of  general  interest,  this  term  turns out to be 

negligible  compared  to Rr/2.rrI the  neglect  of  swirl by other  investigators, 

e.g.  Refs. 5 and 8, is not unreasonable.  We  choose  to  retain it, however, 
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because  its  presence  in  no  way  complicates  our  solution  and,  more  importantly, 

we  suspect  that it may not be  negligible  for  the  innermost  vortex  tubes  in  the 

case  of  Man-constant  circulation.  We  will  clarify this.point when  we  discuss 

our  numerical  results. 

Relation . ." Between ~ Actuator  Disk  Model  And  Zeroth  Harmonic  Flow.  Before 

we  go  ahead,  let  us  pause  to  consider  a  question  of  both  fundamental  and 

practical  interest.  Namely, i n  t h e  ac tua toh  d i n k  d l o w  equal t o  t h e  z e t l a t h  

c ihcum6et len t la l  hahmanic 06 t h e  d l o w  6 i e l d  induced b y  a d i n i t e  N - b l a d e d  

phopeLLetr h a v i n g  t h e  dame r ( r )  dibthibution, as  found  in  linearized  theory 
(Ref. 3 ) ?  

For  simplicity,  we  consider  the  case  of  constant r(r) again and  visualize 

the  axisymmetric  surface S which  contains  the N trailing  tip  vortices.  As 

above,  the  force-free  condition  requires  the  alignment of the  vorticity  vector 

- w = V x 2  and  the  velocity y relative  to  that  vorticity,  hence  relative  to  a 

blade-fixed  coordinate  system,  over  the  surface S to  which  the  tip-trailing 

vorticity is confined.  In  other words, 

w x y  = - 

i  i -0 i "s -n 

w w 
S n 

5 s-Ln RT+W 

= o  

on S ,  where  the  unit  vectors  are  orthonormal,  with Ln normal  to S and Ls 
and Le tangent  to S in  the s and 0 directions  respectively.  Noting  that 

w = 0, we  have  the  three  scalar  equations n 

As N + a, w e  -+ y,, ws + r/271T and  w + -r/4~rT, so that  both  Eqs.  (17) 

and (18) imply  that g.Ln = 0 on S .  This  coincides  with  the  previous  con- 

dition  of Eq. (8) , and  Eq.  (19) reduces  to  the  condition  of  Eq.  (9) , thus 
recovering  our  actuator  disk  equations. 

11 
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Turning  now  to  finite N, we only  need  to  discuss  any  one of the  three 

equations, Eqs. (17) - (19), for  example, Eq. (17). NOW, w e  will be  zero 

for  all 9 ' s  except  at  the N circumferential  trailing  vortex  locations,  where 

it will  have  a  delta  function  character  such  that  its  zeroth, Nthl 2Nthl . . . , 
harmonics  will  be  nonzero. The  idea, therefore, is  to expand w e  and q.i 

into  these  harmonics,  multiply,  and  equate  the  resulting  coefficients of the 

different  harmonics  to  zero.  If  the  resulting  zeroth  harmonic  is  simply  the 

zeroth  harmonic  of w e  times  the  zeroth  harmonic  of 9 - i  then  equating  this 

to  zero  would  imply  that  the  zeroth  harmonic  of q.i is  zero - in  agreement 

with  our  actuator  disk  flow. However, additional  contributions  to  the  zeroth 

harmonic  can  arise  through  the  product of higher  harmonics;  for  example,  we 

have  cos NO cos NO = ( 4  + 4 cos 2 N 0 ) .  Since  there  is  no  reason  why  these 

contributions  should  exactly  cancel  each  other,  it  appears  that  the  zeroth 

harmonic of q-i may n o R  be  zero. In that  case  the  actuator  disk  flow  would 

n u t  equal  the  zeroth  harmonic  of  the  flow  field  induced by a  finite-bladed 

propeller. 

-n 

-n 

-n 

-n 

For  the  special  case  of L i g h t   L o a d i n g ,  i.e.,  the  classical  linearized 

theory,  though,  the  perturbational  velocities can be  neglected  and  the 

trailing  vortices  are  undeformed so that s-in = ULx-in = 0, and  Eqs. (17) - 

(19) become 

o = o  (20) 

o = o  ( 2 1 )  

Since RT  and U are  independent of 8 ,  we have  no  products  of  higher 

harmonics and  the  identity  of  the  actuator  disk  with  the  zeroth  harmonic is 

again  established  for  the  linearized case, cf.  Ref. 3. 

These  results  imply  that  caution  must  be  used  in  trying  to  apply  actuator 

disk  results  for  cases  with  both  low  blade  number, N < 6 or s o ,  and heavy 

loading.  This  is  especially  true  with  respect  to  the  inflow  over  the  outer 

portions of the  blades. 
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Extension To  The Case-Of-Pi=ecewise  Constant  Circulation. First, let  us 

put  our  equations in nondimensional  form,  referring  lengths  to R; velocities, 

y and ys to RR; r to RR ; and Y to RR . F o h  convenience,  we wile o m i t  any 

e x p l i c i t   n o t a t i o n  i n  t h e  hemaindeh o d  t h e  hepoht  t o  d i s t i n g u i h h   t h e s e   q u a n t i -  

t i e n  6hom the ih   d imens iona l  b o h m .  

2 3 

Now, extension of Eqs. ( 8 )  and (10) for  the  case of piecewise  constant 

circulation is quite  straightforward  and  results in the  equations 

K m 
Y(O,Rk) = AT:/2 + I G(S,tw;x,Tk) yw de 

w=l 0 

to be satisfied on each  vortex  tube  r = Tk(x). The advance  ratio X is 

defined  as U/RR and 

It  is  understood  that rK+l = 0. 

E q s .   ( 2 3 )  and ( 2 4 )  constitute  the  final  set of 2K coupled,  nonlinear, 

singular  integral  equations  in  the 2K unknowns  Tk  and y k I  for  k = 1 through K .  

Asymptotic ~ ~~~" Behavior  Of  The  Unknowns.  Let  us  examine  the  equations  at 

x = 0 and m, starting  with  x = w .  

As x -+ m, it  is  known  that  T  (x)  approaches  a  constant,  say Tkm, and 

y(x),  say  ykm.  With  these  quantities  constant at x = 00, the  integrals  in 
E q s .   ( 2 3 )  - ( 2 5 )  can be  evaluated  analytically.  Instead  of  pursuing  the 

details  of  these  integrations,  we  use  the known result  (e.g.,  Ref. 3 )  that 

an  infinite  solenoid of constant  radius  and  constant  vortex  density, 

and ykm in  our case, induces  a  velocity  field  given by 

k 

Tkm 

(u' ,V',W') = (O,O,O) , r > T  km 

13 



Since 27rY(6,p) is  the  dimensionless  volume  flow  through  the  disk  r < P 

at x = 6, we then  see by  virtue of Eq. (26) that Eq. (23) munt reduce  to 

where Fkm is simply Fk at x = m I  that is, with  Tk  replaced by Tkm. These 

equations  are K simultaneous  algebraic  equations  in  the  asymptotic  values 

ylm through yKm. Their  form  is  such  that  they  can be  solved  successively 

for YK,' YK-l,mr - - - I  ylml yielding 

Y k m = -  A +  7 A + F k m  , A: X + 5 yv, 
v=k+l 

for  k = K,  K-1, ..., 1 in  turn.  It  is  understood  that A = X for  k = K. 

Of  these  various  results,  Eq. (27) will  be  used  to  put Y(OIR ) in k 
Eq. (23) in  terms  of  the  unknown  Tk's  and ykls, and  Eq. (29) will  be  used 

in  constructing  a  suitable  analytic  form  for  our  solution. 

It  is  important  to  note  that  the  asymptotic  relations of Eqs. (27) and 

(29) constitute 2K equations  in 3K unknowns,  the Y(O,Rk)'s1 Tkmls and ykrn1s. 

Thus, t h e  d i n a l  b e i p b t k e a m   c o n t h a c t i o n ,  go& e x a m p l e ,  c a n n o t  be computed imme- 

diately i n  tehmb ad t h e   o p e h a t i n g   c o n d i t i o n n  h i m p l y  b y  i n w e b t i g a t i o n  a d  t h e  

a b y m p t o t i c   b e h a v i o h ,   b u t   m u b t  a w a i t  t h e  compLete  n a l u t i o n  06 t h e  g o v e h n i n g  

i n t e g t a l  e q u a t i o n b .  

14 



Consider now the  behavior of the  vortex  densities as x -+ 0 . For X = 0 + 

the f.low in  each  meridional  plane  makes  a  full  turn  around  the  slipstream  lip. 

Consequently, it is  clear  that  a  classical  square  root  Singularity is present 

in the  outermost  vortex  density, so that y K ( x )  = O(x-%) as x + 0 . This 

singularity  should, we believe,  persist  even in the  nonstatic  case, A > 0, and 

vanish  only  in  the  light  loading  limit  when  the  induced  flow is negligible 

compared  to  the  free  stream  and  the yk (x) ' s  and Tk (x) ' s  are  all  constant. On 

the  other  hand, we anticipate  that  the  inner  vortex  tubes  will  not  be  singular, 

so that  yk(x) = o(1) as x -+ 0' for  all k < K. 

+ 

Assumed  Form  Of The Unknowns.  It  will  be  convenient  to  assume  the 

following  approximate  form  for  the  unknowns, 

where  the  f I s  and  g ' s  are  "matching  functions". All of  these  functions 

are  chosen  to  be  regular,  except  for gK1, which  provides  the  necessary  square 

root  singularity  for yK at  x = 0 .  In  selecting  suitable  matching  functions, 

we  require  that f . ( O )  = 0 so that  Tk(0) = R k .  We  also  require  that  all of 

the  g I s  -+ 0 as x + m. With  dTk/dx - 0 this  ensures  that  yk(x) - ykm. 

j kj 

7 

kj 
The  reason  for  the k subscript on N is  that  we  would  like  to be able 

to  do  a  particularly  good  job  in  calculating yK, which  is  generally  quite  a 

bit  larger  than  the  other yk's, and  singular  as  well. In practice, we have 

found  it  efficient  to  use Nk % 6 for  all k's < K and NK % 9. Since we will 

always  use N1 = NZ = ... - NK-lf 
single  name,  say N', and NK simply by N. 

- let  us  simply  denote  these  values by a 

By trial  and  error  over  a  number of calculations, we have  decided  upon 

the  following set of matching  functions, 
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- - - r LTK-1 (6 
interpolation 

With  these PO 

is,  recalling 

(33) 

gkj  (x) = x  e , k = K   j = 1  -4 -3x 

= x j e  -3x , k = K   j z 2  

- jx = e  , k < K  

with  the  c Is positive  constants  ranging  from  about 0.2  to about 4. 
j 

General  Outline  Of  Iterative  Solution.  We  will  first  outline  our 

iterative  solution  in  general  terms.  Starting  with  zeroth  iterates  which 

are  constant,  namely, 

,Lo) (x) = Rk (34) 

y p  (x) = y;:) (35) 

we compute  improved  vortex  tube  shapes  TL1)  based  upon  Eq. (23).  With 

Tk = T:’) we then  compute  improved  vortex  densities y(l)  from  Eq.  (24).  With 

yk = yL1)  we , in  turn,  compute  T ( 2 )  Is , and so on until  suitable  convergence 

is  attained.  Our  notation is to  be  interpreted  in  the  obvious  way.  For 

example, y::) is  given by  Eq.  (29) with TL:) set  equal  to Rk  in Fkm ( 0 )  . 

k 

k 

In  Ref. 6 the  improved  shapes  and  vortex  densities  were  obtained by 

applying  a  Newton-Raphson  technique  to  Eqs.  (23)  and  (24),  respectively.  For 

the  present case, where K > 1, we found  this  scheme  to  be  generally  inappro- 

priate  for  the  vortex  tube  shape  calculations  since  closely  spaced  tubes 

usually  crossed  each  other,  producing  a  divergent  situation.  Instead  of  a 

Newton-Raphson  technique,  we  now  proceed  along  different  lines. 

Vortex  Tube  Shape  Calculation.  Regarding  the  TLn’ I s  and  yLn) Is as known, 

we  determine  the Tk (n+l)ts as  follows.  We  first  compute Y(n)  (O,Rk)  for k = 1, 

..., K and  then  seek  these  stream  function  values  at  each  of M selected  axial 

stations,  x = 6 1, ..., 6M. To accomplish this, at  a  given  station 6v  we cal- 

culate Y (n)  at  the  radial  points Tjn) ( 6 v )  / 2  , Tjn) ( 6 v )  , [T1 (n) ( 6 v )  + Tin) ( cSV) ] / 2  , 
+ TAn) I / 2  and TAn’ (6 , )  , and  then  use  three  point  radial 
to  find  the  radius  at  which  each  of  the  values Y (n) ( 0  ,Rk)  result. 

nts  in  hand,  say  T kv (n+l) , we  get  the  b (n+’) I s  by “fitting“. That 

Eq. (30) , we  have 
kl 
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where v = 1, ..., M for  each  fixed  k.  Inversion  of  these K M x M  matrix 

equations  yields the desired  b  (n+l) I s .  
kj 

It may  happen  that  one  or  more  of  the Y (n)ls cannot  be dound in the 

radial  search  at  a  given 6 v  station.  Consider  the  case  where K = 1. If 

Y (n) (0 , 1) > Y (n) [6v,T:n) ( 6 v )  ] and X is close  enough  to  zero or the  static  case , 
we will  not  be  able  to  find Y (n) (0,l) in  our  radial  search  at  x = 6\, because 

the  stream  function  drops  off  as we  go  out radially  beyond  Tin) ( 6 v ) .  At such 

a  location  we  should  choose T (n+l) ( A v , )  sufficiently  larger  than Tin) ( ( A v , )  so as 

to  gain  the  required  additional  volume  flow.  In  particular,  we  put 
1 

u z A +  ( ) d V  + 0.15 
6 v  + 0 . 3 0  

and  Eq. ( 3 7 )  can be  solved  for TI (6,,). Of  course, any  error  induced  by 

the  approximation  of E q .  (38) will tend  to  zero  as  the  iteration  converges. 

(n+l) 

As  we  have  already  said,  for K > 1 it  is  conceivable  that  a  number  of  the 

outer '4 (n) ' s  cannot be  found.  Adopting  the  same  argument  as  described  above 

for K = 1, we arrive  at  the  following  logic.  If  we  cannot  find Y (n) ( 0  ,Rk) 

at we set 

6,  + 0.15 

6 v  + 0.30 
(39) 
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As our  final  comment on the  shape  calculation, we note  that  the  radial 

three  point  interpolation  interval  should not be  permitted  to c h o n n  a  vortex 

tube.  For  example, T3, (T3 +T4)/2 and T4 w o u l d  be  a  suitable set of  inter- 

polation  points  whereas  (T3  +T4)/2, T4 and  (T + T  )/2 cross  the  fourth  vortex 

tube  and  therefore  would n o t  be  suitable. The reason is that  the  stream 

function,  considered  as  a  function  of radius, has  abrupt  changes in  slope,  or 

"kinks", when we cross  a  vortex  tube, so that  parabolic  interpolation  would 

not  be  very  accurate. 

4 5  

Vortex  Density  Calculation.  Take  k < K. For  the  class of circulation 

distributions  of  practical  interest,  it  turns out that  the  contribution  to 

uk in E q .  (24) by the kth vortex  tube  itself  is  small  compared  to  the  contri- 

bution by the  Kth  vortex  tube.  This  implies  that  the  dependence  of uk on yk 

is  rather  weak  and  suggests  that  a  simple  successive  approximation scheme, 

namely , 

should  suffice. The superscript  (n) on the  right  hand  side  is  somewhat 

misleading.  Remember  according  to  our  overall  scheme, we calculate  the 

TLn+l) I s  and t h e n  the  yk (n+l) I s .  As a  result,  when we reach E q .  (40) , the 

TLn+l) ' s  are  already  available  and we might  as  well  use  them.  Thus , the  right 

hand  side  of  Eq. (40) is  computed  with  the  Tk  (n+l) s and  the  yLn) ' s , and  by 

means  of E q s .  (31) and (33), this  equation  may  be  written  in  its  final  form, 

where uk is  given by E q .  (25)  and  the  superscript  (n) on the right is  inter- 

preted  as  indicated  above.  For  each  k = 1, 2, ..., (K-1) we  demand  satis- 

faction  of E q .  (41) at  the  discrete  points x = a l l  ..., aNl. This  produces 
( K - 1 )  N' xN' matrix  equations  which  are  then  solved  for  the  unknown  a (n+l) 

kj 
For  k = K, however,  u is n o t  weakly  dependent on yK, so that  a  simple 

successive  approximation  scheme can be  expected  to  be  only  very  slowly  con- 

vergent  at  best, or divergent  at  worst.  We  therefore  choose  to  adapt  the 

more  powerful  Newton-Raphson  Method,  as  developed  in  Ref. 6. Briefly,  we 

K 
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re-express Eq.  (24) as uK = FK/2yK and  expand  the  nonlinear  term l/yK about 

the nth iterate, 

Since  uK as well as the right hand side of Eq. (42) are linea& in the  unknown 

YK (n+l) the  re-expressed  form of Eq.  (24) can be reduced  to  a  system of 

algebraic  equations in the  unknown aR j (n+l) I s .  Omitting  the  details  we  obtain 

where GT is a  shorthand  notation  for GT(<,tv;x,Tk). Again the superscript 

(n)  is used, but the  quantities  involved  are  to  be  computed  taking  the  n+l th 

shapes and  nth  vortex  densities.  Demanding  satisfaction  of Eq. (43) at the 

discrete  points  x = B1, ..., B produces  an N x N matrix  equation  for  the 

vk 

N 

We wish  to  emphasize  that the approximation  of Eq. (42) tends  to  an 

equality as  the  iteration  converges, so that the essential  nonlinear  character 

of Eq. (24) is n o t  compromised by the  expansion of Eq.  (42). 

Finally, we  note  that  the  numerical  calculation  of  the  Legendre  functions 

Q f k r  involved  in G and GT, is  discussed in Appendix A.2  and  the numerical 

integration  scheme in Appendix A.3 . Descriptions and listings of the  various 

computer  codes  that were developed  for  the  general  calculations  are  given in 

Appendix A . 4  

NUMERICAL  RESULTS 

Thrust Coefficient.  In  selecting  circulation  distributions  for our 

numerical  examples, we will  take two "representative"  distributions and  scale 

their  magnitude so that  the  resulting  thrust  coefficient  CT is within the range 
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of engineering  interest.  Defining CT as  the  thrust  divided by  ‘i;(QR) (ITR ) , 

with ‘i; the  fluid  mass  density, we have  from  the  Kutta-Joukowski Law, 

2 2  

1 1 
CT = { r - } T(r) dr ( 4 4 )  

Representative  Circulations. Let us  consider  the  two  representative 

distributions r (r) = r ,  a  constant, and r (r) = A r (Ref. 3 )  , with  the 
constants r and A chosen so that  CT = 0.01, say, which  is a typical  value 

for  a  hovering  helicopter. 

For  Case 1, T(r) = T I  the  swirl  term r/4~rr causes  the  integral  to 

diverge. In reality,  of course, a  finite  hub  would  preclude  this  divergence. 

In selecting  a  value  for r ,  then, we simply  neglect  the  swirl  term  in Eq. (44) 

and CT = 0.01 r /2~r .  Let us therefore  take r = 0 . 0 2 1 ~  . 
For  Case 2,  r (r) = A r G, the  integral  does  exist  and A = 0 . 2 1  results 

in  the  desired  thrust  coefficient  CT = 0.01 . Next,  see  Fig. 4, we  approximate 

0.08 

r 

0.04 

0.00 

0.0 0.5 1.0 
r 

Figure 4 .  Representative  Nonuniform  Circulation  And 
Its  Piecewise  Constant  Approximation 
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r(r)  by a  piecewise  constant  representation.  For  our  purposes, an eight  step 

representation  seems  to  permit  a  suitably  close fit, na'mely, 

k 1 2  3  4  5  6  7  8 

Rk 0.15  0.25  0.35  0.45  0.55  0.80  0.90 1.00 (45) 

rk 0.015  0.037  0.052  0.065  0.074  0.079  0.069  0.045 

We do not  claim  that  this patrticuLah representation  provides  a "best" fit in 

any  special  sense,  but  just  that  it  appears  to  be  entirely  reasonable. Al- 

though  there  is  a  fair  amount  of  latitude  in  the  choice of the  Rkls  and r k l s ,  

we  must  have r l  > 0 for  reasons  of  convergence  that  will  be  discussed  later. 

Case.~_l_-Re?ults  And Discussion.  Let us first look at  the  uniform  cir- 

culation  case  where K = 1, R1 = 1.0, rl = 0.02~ and A = 0. T o  define  our 

numerical  solution,  we  chose  N = 9; the B v l s  = 0.02,  0.05, 0.10, 0.18,  0.30, 

0.50,  0.85,  1.40,  2.50;  the  c 's = 0.18,  0.69,  1.20,  1.71,  2.22,  2.73, 

3.24,  3.75; M = 6; the d v ' s  = 0.1, 0.3, 0.6, 1.0, 2.0,  5.0;  and  the a ( 0 )  I s ,  

blj 

j 

11 
( O )  's = 0, so that T i o )  (x) = 1 and y i o )  (x) = 0.14107 . 

As seen  from  Fig. 5, the  iteration  is  very  nicely  convergent,  with  T1(x) 

essentially  converged  after  only  two  iterations,  and y,(x) after  three.  The 

NSWTH  input  variable,  explained  in  Appendix  A.3,  was  set  equal  to  3 so that 

the  more  accurate  integration  schemes  were  employed,  beginning  with  the  third 

iteration.  The  results  of  the  fourth  and  final  iteration  are 

a  (4) = 0.14676 , -2.70486,  21.20489,  -98.70655 I 272.84574 
11 

-428.19646,  374.74065,  -170.60165,  31.97000 

b (4) = -0.11037 , 1.30353 , -5.85472 , 12.71052,  -12.66851, 
11 

4.87670 

for  j = 1 through 9, and 1 through 6, respectively. 

Representative  streamtubes  and  meridional  velocities  have also been  com- 

puted,  using  the  results of the  fourth  iterate,  and  are  presented  in  Fig. 6. 
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Figure 5. Successive  Iterates  For  Case 1, A = 0 
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Figure 6. Streamtubes And Velocity Box For Case 1, A = 0 



To emphasize  the  appreciable  difference  between  these  results  and  those  of  the 

classical  linearized  theory, we have  compared  the  respective  streamtubes in 

Fig. 7. Actually,  the  term  "linearized  theory"  does  not  make  any  sense  for 

the  static  condition  since  there  is  no  stream  about  which  to  linearize.  But, 

in  the  linear  theory it  is known (Ref. 3 )  that  the  axial  inflow u'(0,r) is 

proportional  to  the  circulation  distribution r(r). We  can  extend  this  idea 

down  to  the  static  condition  and  shall d e b i n e  the  term  "linearized  theory" 

for aLL conditions,  static  and  nonstatic,  to  correspond  to  a  set of uncon- 

tracted  vortex  tubes  of  constant  pitch,  with  their  vortex  densities  chosen 

such  that  u'  (0,r)  is  proportional to r (r) . 
Results  similar  to  these  have  already  been  reported  in  Ref. 6. We  have 

repeated  them  here  because  our  present  solution  is  somewhat  different  and  more 

accurate. In particular,  both  the Y interpolation  scheme  for  computing  the 

vortex  tube  shapes  and  the  Gauss-Chebyshev  integration  schemes  appear  to  be 

somewhat  better  than  their  counterparts  in  Ref. 6 .  

It  is  important  to  note  that d o h  t h i n  cane ,   whet le  r(r) = r and A = 0, t h e  

ntncam.tube pat-tehn in v i h t u u l l y  i n d e p e n d e n 2  0 6  r over  a  wide  range of r values. 
To see  this  analytically, we go  back  to  the  governing  equations,  Eqs. ( 8 )  and 

(10). For A and  hence U = 0, the r dependence  cancels  out  of  Eq. ( 8 )  since 

both Y ( 0 , R )  and y are  proportional  to y, which,  in turn, contains  the r 
dependence.  From Eq. (10) , we  see  that  if  we  discard  the  swirl  term r / 8 n  T , 

y will  simply  be  proportional  to f i  for A = 0. With  the  swirl  term  omitted, 

it  follows  that  the  streamtube  pattern  will  be c o m p l e t e l y  independent of r 
although,  of  course,  the  velocities  will  scale  proportional  to f i .  With  the 

swirl  term  included,  this  result  is no longer  true  in  an  exact  sense.  However, 

for  a  wide  range of T's , r 2 / 8 v 2 T 2  << C2r/271 in  Eq. (10) - recall  that  Eq. (10) 

is  in  dimensional  form - so our  statement  remains  true  in  an  approximate 

sense. To see  this  numerically,  we  re-ran  Case 1 with r increased by a  factor 
of ten  and  superimposed  some  typical  streamtube  points,  indicated  by  small 

solid  circles, on our  original  flow  field  in  Fig. 6. They  are  seen  to 

virtually  coincide  with  the  original  streamtubes! 

2 2 2  

Next,  we  repeated  Case 1 for  the n o n n t a t i c  cases X = 0.01 and X = 0.10 . 
The  speed  of  convergence  improved  slightly  as A increased.  This  is  not 
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surprising  because  as X -+ OJ, for  a  fixed  circulation  distribution,  the  solution 

tends to the  linearized  solution*  which, in fact,  coincides  with  our  zeroth 

iterate. 

The results  of  the  final  converged  iterations  are  as  follows. For. 

h = 0.01, where  four  iterations  were  still  needed, 

a ( 4 )  = 0 . 1 3 1 0 0  , - 2 . 2 4 1 1 1 ,   1 7 . 3 4 0 4 1 ,   - 7 9 . 7 9 5 2 4  , 2 2 2 . 8 2 5 7 4  , 
l j  

- 3 5 5 . 6 4 0 6 8 ,   3 1 7 . 6 9 1 5 3 ,   - 1 4 8 . 1 1 0 1 8 ,   2 8 . 5 5 1 3 4  

= - 0 . 0 9 6 0 5  , 1 . 1 6 1 3 5  , - 5 . 1 9 9 1 3  , 1 1 . 3 2 1 8 9  , - 1 1 . 2 9 7 6 8  , 

4 . 3 4 8 5 4  

and  for A = 0.10, where  only  three  iterations  were  needed, 

a(?) = 0 . 0 1 9 3 3 ,   - 0 . 0 9 9 4 9 ,   2 . 3 8 6 6 5 ;   - 1 2 . 9 8 0 6 0 ,   4 1 . 9 8 3 4 7 ,  
11 

- 7 7 . 2 2 3 6 4 ,   8 1 . 4 3 5 3 8 ,   - 4 5 . 6 8 6 0 8 ,   1 0 . 8 0 5 1 5  

b ( 3 )  = - 0 . 0 0 5 2 7 ,   0 . 2 8 2 2 4 ,   - 1 . 2 2 0 7 1 ,   2 . 8 5 6 1 4 ,   - 2 . 9 7 3 1 6 ,  
l j  

1 . 1 6 8 7 4  

The  final  vortex  densities  are  compared  in  Fig. 8 and  the  corresponding 

flow  fields  are  shown  in  Figs. 9 and 10 for A = 0.01 and 0.10 respectively. 

Several  striking  results  are  apparent  upon  comparison  of  the  three  flow 

fields, Figs. 6, 9 and 10. First, we  note  a  substantial  change  in  the  flow 

field  as X varies  merely  from 0.00 to 0.01 . For X = 0.01 a  "dividing  stream- 

tube", labeled D S  in  Figs. 9 and 10, appears,  having  the  same Y value  as  the 

slipstream  vortex  tube. A l l  fluid  particles  to  the  left  of  this  streamtube 

eventually  pass  through  the  actuator  disk  and  into  the  slipstream,  whereas  all 

other  particles  do  not.  Although  we  had  anticipated  that  this  streamtube 

would  attach  itself  to  the  slipstream  vortex  tube  at x u 0 . 5 ,  our  streamtube 

calculations  seem  to  indicate  that  it  turns  downstream,  perhaps  joining  the 

* Physically, the  pitch  of  the  trailing  vortices  tends  to  infinity  as 
A -+ m, so that  y(x) -f 0. Analytically, we see  from Eq. ( 2 9 )  that 
y, - Fm/ 2 A 2  = O ( 1 / A 2 )  as X + m for r fixed. 
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vortex  tube at x = a. In the  absence of 100% numerical  accuracy,  we  are  not 

at present in a  position  to  clarify  this  point. For X = 0.10 the  dividing 

streamtube  almost  blends  smoothly  with  the  slipstream  vortex  tube. 

In static  and low speed  propeller  testing,  accurate  performance  measure- 

ments  have  been  very  difficult  to  obtain. That  is, significant  differences 

are  found  from  test  to  test  under  seemingly  identical  conditions.  Quite 

likely,  though,  there  are  small  differences  in  the  effective  advance  ratio 

due to  recirculation  within  a  closed  test  facility or  due to  ambient  winds 

about  an  outside  test  facility. As a  result,  it  is  possible  that  the  extreme 

sensitivity of the  dividing  streamtube  to A near X = 0 and  the  associated 

changes  in  the  fundamental  nature  of  the  flow  may  help  to  explain  these 

measurement  difficulties., 

Finally,  let  us  examine  the  nature  of  the  flow  in  the  important  lip 

region.  Theoretically,  the  flow  around  the  lip  persists  for  all  finite X's, 

disappearing  only  in  the  limiting  case of X = m .  Practically,  though,  the 

lip  flow  has  nearly  disappeared  at X = 0.10 and  is aLrnoht regular.  For  any 

given A ,  then,  the  square root singularity  in  the  vortex  density y (x)  will 

be  present,  but  its  coefficient all will  decrease  rapidly  as A increases. 

For  example, the all's  of the  final  iterates  are  0.14676, 0.13100 and  0.01854 

for A = 0.00, 0.01 and 0.10 respectively. 

sl 

Since  the  product of the  vortex  density ys and  the  meridional  velocity 5 

tends  to  a  constant  as  x -+ 0 , as  stated  by  Eq. (9) , the  singularity  in y s  

implies  that 5 must tend  to  zero  as  x -+ 0 . It follows  that t h e  p i t c h  06 t h e  

t h a i t i n g   h e L i c a l  W o h t i c e h  t e n d h  t o  zeha ah x -+ O+, e v e n  d a h  X 0 ,  cauh ing  t h e  

t h a i l i n g  woht iceh  t o  t i n g e h  i n  t h e  d i h k   p l a n e !  This  general  behavior  is in 

agreement  with  flow  visualization  studies  and  has  an  important  bearing  on  the 

axial  inflow  over  the  outer  portion  of  the  blades  and  hence, on the  blade 

design  problem. 

+ 
+ 

Whereas  the  meridional  drift  velocity o n  the  slipstream  tends  to  zero  as 

x -+ O', the  flow a h o u n d  the  lip  is  singular, of course, due  to  the  square  root 

singularity  in  the  vortex  density. Thus, the  axial  inflow u' (0,r) is singular 

as  r -+ 1.0-, see  Fig. 11. Notice  that  the  singular  flow  is  quite  localized, 

being  limited to the  outer 2% of  the  disk  for X = 0.00 and 0.01 . For X = 0.10 
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it  is  not  even  discernible in the  plot.  By  way  of comparison,  the  inflows 

predicted  by  linearized  theory,  e.g.  Ref. 3 ,  are  proportional to r(r)  and 

hence c o n h t a n t  . 
Case 2 Results  And  Discuss_ioc.  For our piecewise  constant  representation 

of  the  nonuniform  circulation,  as  defined by  Eq. ( 4 5 )  and  Fig. 4, we took N, 

the BV's and  the  c ' s  to  be  the  same  as in Case 1; N' = 6; the aV's = 0.02, 

0.1, 0.3, 0.7,  1.2, 2.0 ;  M = 7 ;  the 6 " ' s  = 0.1, 0.2,  0 . 4 ,  0 .7,  1.2, 2.0, 5.0; 

the  a ( o ) ' s ,  b(O) ' s  = 0 and  NSWTH = 3, see  Appendix A.3 . 
We ran this  case,  through  five  iterations,  for  the  same  three  advance 

ratios  as  in  Case 1, namely, h = 0.00, 0.01 and 0.10 . As in  Case 1, excellent 

convergence  was  again  obtained,  although  not  quite  as  fast.  For  both h = 0.00 

and 0.01 the  fourth  and  fifth  iterates  were  virtually  identical,  with  the 

second  and  third  iterates  in  equally  good  agreement  for h = 0.10 . 

j 

kj  kj 

Despite  this  success,  though,  we  should  hasten  to  point out that  the 

convergence  was  very  sensitive  to  whether r l  is  nonzero  or  not.  We  made 
several  attempts  to  include  a "cutout" or rl = 0, both  with  and  without  a 

singular  vortex  density,  and  were  unable  to  achieve  convergence.  Physically, 

this  is  due  to  the  fact  that  the  innermost  vortex  tubes  are  situated  in  what 

is  essentially  a  "dead air" or  recirculatory  flow  region.  With r l  # 0, the 

axial  velocity  is  positive  everywhere  within  the  slipstream  and  the  problem 

is  eliminated,  albeit  the  details  of  the  flow  downstream  near  the  axis  are 

sacrificed  and  the  remainder  of  the  flow  field  is  somewhat  modified. 

The  a ' s  of the  final  iterations  are  presented  in  Tables 1, 3 and 5 for 
kj 

A = 0.00, 0.01 and 0.10, respectively.  The  corresponding  b ' s  are  given  in 

Tables 2, 4 and 6. 
kj 

The  final  vortex  densities  are  plotted  for X = 0.00, 0.01 and  0.10  in 

Figs. 12 - 14, respectively,  and  the  corresponding  flow  fields  in  Figs. 15 - 

17. The  axial  inflow  u'(0,r)  is  plotted  in  Fig. 18. In  Fig. 19 the  stream- 

lines  are  superimposed on the  streamlines  from  the  linearized  theory of 

G. R. Houqh  and D. E.  Ordway  (Ref. 9). 

Virtually  all  of  our  discussion  of  Case 1 applies  equally  well  to  Case 2. 

Two differences  are  apparent,  however,  upon  comparison of  the  flow  patterns; 

see, for  example,  Fig. 6 for  Case 1 and  Fig. 12 for  Case 2, both  with h = 0. 



TABLE 1. VORTEX  DENSITY COEFFICIENTS a FOR gTH ITERATE 
CASE 2 ,  X = 0 . 0 0  kj 

-5 .31005  87 .80304  -454 .79934  1042 .77150   -1020 .40424  355 .89366  

0 . 1 1 8 1 0  -0 .64985  0 . 9 2 5 3 9  1 1 . 9 3 2 0 9   - 2 1 . 4 0 1 6 1  1 0 . 2 1 5 7 6  

0 . 1 9 1 5 9  -2 .33840  1 1 . 1 1 3 7 3  - 1 7 . 8 5 5 5 8   1 2 . 5 4 2 4 2  -2 .82460  

0 . 1 3 5 2 5  - 1 . 6 5 1 5 8  8 . 0 1 8 3 8  - 1 3 . 7 8 8 1 9   1 0 . 4 6 9 7 8  -2 .46419  

0 . 0 9 7 7 5  -1 .13730  5 . 4 1 0 4 3  - 9 . 2 4 6 1 7   6 . 8 6 1 6 8  - 1 . 3 4 2 8 5  

0 . 0 2 7 7 6  0 . 0 0 7 8 5  - 1 . 3 1 8 5 2  5 . 8 9 4 8 1   - 8 . 7 7 1 5 7  4 . 5 6 3 8 6  

-0 .02689  0 . 9 8 2 7 8  - 7 . 2 5 2 8 7  2 0 . 6 6 3 1 5   - 2 4 . 9 8 6 1 3  1 0 . 9 0 9 5 0  

0 . 0 9 9 9 4  -1 .81353  22 .48694  - 1 7 0 . 8 0 6 0 8   6 6 3 . 8 2 1 1 9  - 1 3 4 1 . 7 3 9 3 1   1 4 4 0 . 6 3 7 6 1   - 7 7 6 . 8 7 5 5 7   1 6 5 . 2 3 3 5 6  

W 
W 

TABLE 2 .  VORTEX  TUBE  SHAPE  COEFFICIENTS b FOR gTH ITERATE 
CASE 2 ,  X = 0 . 0 0  kj 

0 . 0 5 1 6 1  

0 . 0 1 6 2 8  

-0 .00255  

-0 .00058  

0 . 0 0 6 6 0  

0 . 0 5 5 3 3  

0 .15479  

0 . 3 7 3 0 1  

-0 .78685  

- 0 . 2 1 9 6 5  

0 . 0 8 7 9 2  

0 . 0 7 3 4 7  

- 0 . 0 2 3 8 3  

- 0 . 7 2 9 4 3  

-2 .24066  

-5 .60574  

5 . 0 8 8 8 3  

1 . 5 4 5 4 9  

- 0 . 4 0 9 9 3  

-0 .43210  

0 . 0 5 8 0 8  

3 . 9 9 9 0 8  

1 2 . 8 1 0 2 3  

3 2 . 6 2 2 2 9  

- 1 5 . 8 6 6 9 8  

- 4 . 8 8 0 3 3  

1 . 3 7 2 0 9  

1 . 8 6 9 5 8  

0 . 7 4 6 7 2  

- 1 0 . 1 9 7 1 3  

-35 .51269  

- 9 2 . 6 9 8 1 5  

25 .94582  

9 . 0 2 8 3 5  

- 1 . 1 1 2 4 6  

-2 .50070  

- 1 . 2 8 3 9 1  

1 4 . 6 3 1 1 6  

5 2 . 8 6 6 0 4  

1 3 9 . 4 7 1 8 6  

-19 .88912  

- 7 . 7 7 9 2 8  

0 . 0 5 5 6 9  

1 . 4 4 7 5 3  

0 . 8 3 7 9 2  

-10 .91492  

-40 .11554  

-106 .28259  

5 . 5 2 9 3 4  

2 . 3 7 5 7 2  

0 . 1 1 0 6 1  

- 0 . 3 3 8 7 3  

-0 .20402  

3 .35289  

1 2 . 2 7 3 1 7  

3 2 . 4 1 2 7 7  



- 1 . 7 5 7 5 4  

0 . 1 7 3 8 9  

0 . 1 7 6 0 4  

0 . 1 1 8 0 8  

0 . 0 8 2 6 5  

0 . 0 0 8 6 4  

- 0 . 0 4 6 2 0  

0 . 0 9 2 2 6  

W 
A 

2 9 . 6 6 5 9 2  - 

- 1 . 7 4 0 8 2  

- 2 . 1 4 6 1 8  

- 1 . 3 9 7 3 6  

- 0 . 9 0 9 2 2  

0 . 2 3 0 1 6  

1 . 1 3 1 5 6  

- 1 . 3 5 0 0 3  

0 . 0 2 9 4 4  

- 0 . 0 0 2 5 5  

- 0 . 0 0 9 8 7  

- 0 . 0 0 5 7 4  

0 . 0 0 0 3 4  

0 . 0 3 6 0 8  

0 . 1 1 0 0 7  

0 . 2 7 6 9 9  

TABLE 3 .  VORTEX DENSITY COEFFICIENTS a FOR gTH ITERATE 
CASE 2 ,  X = 0 . 0 1  k j  

1 5 2 . 9 8 6 1 0  

8 . 0 9 6 2 2  

1 0 . 9 2 0 5 4  

7 . 2 1 5 2 3  

4 . 6 2 5 7 7  

- 1 . 9 2 2 3 0  

- 7 . 0 9 9 4 0  

1 4 . 8 9 5 3 0  - 

3 6 2   . g o 5 6 9  

- 7 . 2 6 3 6 4  

- 1 9 . 1 1 8 0 6  

- 1 3 . 0 7 4 3 5  

- 8 . 2 9 0 2 1  

6 . 3 4 2 5 0  

1 8 . 7 7 5 9 3  

- 1 0 7 . 7 8 9 0 3  

- 3 5 9 . 7 8 1 7 1  

- 0 . 3 1 7 9 7  

1 5 . 0 7 1 6 2  

1 0 . 6 4 0 7 5  

6 . 5 8 8 4 3  

- 8 . 4 8 5 2 4  

- 2 1 . 8 2 1 9 2  

4 2 2 . 6 2 2 5 9  

1 2 4 . 9 2 7 7 5  

2 . 0 1 7 7 3  

- 4 . 1 5 9 7 1  

- 2 . 8 3 9 8 3  

- 1 . 4 9 2 4 8  

4 . 2 3 3 5 9  

9 . 3 5 0 0 0  

- 8 6 7 . 3 9 4 5 1   9 4 5  0 6 8 6 5  

TABLE 4 .  VORTEX  TUBE  SHAPE  COEFFICIENTS b FOR gTH ITERATE 
CASE 2 ,  X = 0 . 0 1  k j  

- 0 . 4 5 6 7 9  

0 . 0 4 9 9 8  

0 . 1 7 4 7 7  

0 . 1 1 8 7 4  

0 . 0 3 1 8 0  

- 0 . 4 9 5 9 8  

- 1 . 6 2 8 0 9  

- 4 . 1 9 9 1 4  

3 . 1 0 6 9 0  

0 . 0 3 4 1 0  

- 0 . 8 0 5 5 4  

- 0 . 5 3 7 5 1  

- 0 . 0 6 9 9 6  

2 . 9 1 4 1 5  

9 . 5 4 3 6 7  

2 4 . 6 8 7 5 6  

- 9 . 7 8 9 3 5  

- 0 . 4 4 5 9 0  

2 . 5 1 7 6 4  

2 . 0 6 4 3 0  

0 . 9 0 2 8 6  

- 7 . 4 7 2 8 7  

- 2 6 . 5 9 5 8 1  

- 7 0 . 3 9 5 1 8  

1 6 . 5 6 0 2 4  

2 . 2 2 6 2 8  

- 3 . 0 0 9 9 1  

- 2 . 8 6 6 8 8  

- 1 . 4 7 3 6 6  

1 0 . 7 5 8 3 8  

3 9 . 7 2 2 5 3  

1 0 6 . 2 2 6 3 1  

- 1 3 . 0 8 5 8 7  

- 2 . 7 3 3 6 8  

1 . 5 6 1 9 2  

1 . 7 8 8 4 9  

0 . 9 9 6 4 1  

- 8 . 0 2 2 9 0  

- 3 0 . 1 9 5 6 6  

- 8 1 . 1 5 9 5 9  

5 1 6 . 5 0 9 9 5   1 1 1 . 4 0 5 7 0  

3 . 6 9 7 3 5  

0 . 9 4 9 0 0  

- 0 . 3 3 6 6 3  

- 0 . 4 5 2 2 0  

- 0 . 2 6 0 1 3  

2 . 4 6 6 4 5  

9 . 2 6 0 3 5  

2 4 . 8 3 0 0 5  



0 . 1 6 1 2 4  

0 .11348  

0 .09587  

0 . 0 8 3 3 2  

0 . 0 7 6 5 3  

0 .05075  

0 . 0 3 9 0 5  

0 . 0 2 0 8 0  
w 
en 

-0 .05617 

-0 .LO530 

-0 .18512  

- 0 . 1 9 4 7 3  

-0 .21103  

0 - 0 6 6 7 4  

0 . 3 3 4 9 2  

-0 .38777  

-0 .00069  

0 . 0 0 6 4 1  

0 . 0 0 7 8 6  

0 . 0 1 0 3 3  

0 . 0 1 2 5 6  

0 . 0 1 8 2 9  

0 . 0 2 5 7 5  

0 . 0 4 0 6 6  

TABLE 5 .  VORTEX DENSITY COEFFICIENTS a FOR 3RD ITERATE 
CASE 2 ,  A = 0 . 1 0  kj 

1 . 0 5 2 4 6  

1 . 0 7 8 9 7  

1 . 3 3 8 7 7  

1 . 2 6 5 7 6  

1 . 2 4 2 1 2  

-0 .44597  

-1 .91290  

4 . 5 6 1 7 4  

-0 .13647  

-1 .07704  

- 2 . 1 2 3 5 4  

-2 .22080  

- 2 . 3 1 9 0 4  

1 . 5 1 1 2 1  

4 . 8 6 0 9 6  

- 1 8 . 6 3 8 0 0  

- 0 . 7 9 7 1 1  

0 . 3 9 2 7 8  

1 . 7 4 8 5 9  

2 . 0 3 5 9 8  

2 . 2 3 8 6 4  

-1 .91270  

- 5 . 4 1 0 4 3  

4 9 . 9 1 2 7 6  

0 . 0 1 8 6 6  

-0 .14728  

- 0 . 6 0 5 8 1  

-0 .69016  

-0 .74307  

0 . 9 9 3 8 1  

2 . 3 1 4 2 2  

- 8 5 . 9 4 6 8 6   9 0   - 6 9 3 0 5  

TABLE 6 .  VORTEX  TUBE SHAPE COEFFICIENTS b FOR 3RD  ITERATE 
CASE 2 ,  A = 0 . 1 0  kj 

0 . 1 2 9 9 5  

0 . 0 5 5 5 6  

0 . 0 5 8 7 1  

0 . 0 4 0 7 2  

0 . 0 2 4 4 4  

-0 .02246  

-0 .11497  

-0 .31024  

-0 .66299  

- 0 . 1 8 6 5 4  

-0 .17408  

-0 .04899  

0 . 0 5 6 6 1  

0 . 3 3 7 8 6  

0 . 8 8 7 4 9  

2 . 0 4 3 2 4  

2 . 0 0 7 0 2  

0 . 6 8 0 8 3  

0 . 6 5 4 7 4  

0 . 3 0 2 7 1  

0 . 0 0 5 9 7  

- 0 . 8 1 3 9 3  

-2 .45422  

-5 .83484  

- 3 . 0 1 3 3 3  

-1 .07260  

-1 .04374  

- 0 . 5 2 8 7 1  

- 0 . 0 9 7 3 0  

1 . 1 4 3 1 1  

3 . 7 1 2 4 0  

8 . 8 9 6 8 3  

2 .20558  

0 .76284  

0 . 7 4 8 2 6  

0 . 3 8 2 1 2  

0 .08656  

- 0 . 8 1 5 6 1  

-2 .83834  

-6 .84617  

5 2  , 1 2 8 5 8   1 2 . 6 3 7 1 7  

-0 .65428  

-0 .22515  

-0 .21939  

-0 .11404  

-0 .03245  

0 . 2 4 0 7 9  

0 . 8 8 2 7 5  

2 . 1 2 2 6 9  
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First, the innehmont uohtex tuben  expand  initially for  Case 2, whereas 

the  radial  flow  is  purely  negative t h h o u g h o u t  the  slipstream  for Case 1. This 

is  due,  of course,  to  the  negative  vorticity  of  the  innermost  vortex  tubes  and 

is predicted  even by lineatized theory - as seen  in  Fig. 19 €or  the  static 

case. The expansion  of  the  innermost  vortex  tubes  is seen clearly,  too, in 

the  smoke  pictures  of J. B. Rorke  and C. D. Wells  (Ref. 10). In fact,  a  very 

close  correlation is observed  overall  between  our  computed  static  flow  field, 

Fig. 15, and  the  corresponding  smoke  picture  in  Fig. 3 of  Ref. 10 for  about 

the  same CT. Their  actual  circulation  distribution,  of  course,  and  our 

prescribed  piecewise  constant  distribution  are  undoubtedly  somewhat  dissimilar, 

but  probably  not  enough  to  invalidate  a  comparison  of  the  two  flow  fields. 

The  worse  dissimilarity  most  likely  is  the  fact  that rl # 0. As discussed 

above,  therefore, we can  not  expect  the  flow  field  to  be  predicted  properly 

along  the  axis in the  slipstream.  This  is  just  what  we  find,  Fig.  3  of  Ref. 10 

showing  a  trace  of  reverse  flow. 

Second,  the n a n u n i ~ a h m  CihcUlatiOn  hebutts i n  a nhahperr conthaction 06 
t h e  slipstheam. At  x = 0.1 and a, say, the  contraction  is 15.4% and  29.3%  for 

Case 2, compared  with 11.3% and  25.6%  for  Case 1. The reason  appears  to  be  as 

follows.  Consider  the  outermost  vortex  tube  k = K = 8 all by  itself. Its 

self-induced  contraction  would  be  virtually  the dame as €or Case 1. Now  in- 

clude  the  effect  of  the  interior  vortex  tubes.  The  tubes  for  k = 6  and 7 

carry  positive  vorticity  and  hence  induce  an  additional  contraction,  whereas 

the  other  tubes, k = 1, ..., 5, carry  negative  vorticity  and  induce  an  ex- 
pans:.on. The  inward  flow  induced on the  outermost  tube  by  the  tubes  for 

k = 6 and 7 is  much  stronger, on the  other  hand,  because  of  their  close 

proximity  to t:lis tube, so that  the n e t  effect  is an  additional  contraction. 

Numerically,  these  rcsults  are  also  in  good  accord  with  the experimeiltal data 

of Rorke  and  Wells,  at  x = 0.1, see  Fig.  6  of  Ref. 10. They  can  not  be  com- 

pared  exactly  at  x = m, but  with  extrapolation  they  would  seem  to  agree  except 

that  the  experimental  values  for  the  respective  contractions  are  much  nearer 

together.  In  line  with  our  previous  comments,  this  discrepancy  may  arise 

because rl f 0. That is, the  presence  of  recirculatory  flow  along  the  slip- 

stream  axis  would  reduce  the  downstream  contraction  and so decrease  the 

I 
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differences in contraction  between  the  cases  for  uniform  and  nonuniform 

circulation  distributions. 

We  should  make two further  points.  One  concerns  the  axial  velocity 

distribution  within  the  slipstream.  We  see  from  Figs. 15, 16 and 18 that 

for  small A's this  distribution  is  appreciably  more  uniform  downstream  than 

it is at  the  disk. The other  point  concerns  the  dependency  of  the  streamtube 

pattern on the  magnitude of the  circulation  distribution, or the  thrust  co- 

efficient.  We  recall  for  the  case  of  uniform  circulation  that  the  effects 

of  swirl can be  neglected  and  that  the  streamtube  pattern  is  practically  in- 

dependent  of r over  a  wide  range  of  values.  For  Case 2, however,  we  found 

this  is n0.t true - at least  as  far  as  the  inner  flow  is  concerned,  say  within 

r < 0.3, where  the swirl.is strongest. To illustrate,  we  scaled  our  piecewise 

constant  circulation  distribution by a  factor  of  five  and  the  initial  expansion 

of  the  innermost  vortex  tubes  completely  disappeared.  Again,  this  could  be 

related  to  the  fact  that rl # 0. 

CONCLUSIONS 

The  axisymmetric  flow  field  induced by  an actuator  disk  with  a  prescribed 

nonuniform  circulation  distribution  is  considered.  Coupled,  nonlinear  integral 

equations  governing  the  wake  geometry  and  the  vortex  density  are  developed  from 

the  force-free  condition.  These  are  discussed  from  both  physical  and  mathe- 

matical  points  of  view  and  an  iterative  solution  is  put  forward. 

Numerical  results  are  presented,  first  for  the  case  of  a  uniform  circu- 

lation  and  then  for  a  nonuniform  circulation  approximated by an  eight-step, 

piecewise  constant  distribution.  For  each  case,  three  different  advance 

ratios, including  '_he  static  condition  are  solved. All of  these  solutions 

are  rapidly  convergent  for  finite  circulation  at  the  hub  axis. 

The most  important  conclusions  to  be  drawn  from  this  study  may  be 

summarized  as  follows: 

1. The flow  around  the  lip  of  the  outermost  vortex  tube  trailing  from 

the  blade  tips  is  singular  for  the  static  case  and  all  finite  advance  ratios. 

A s  a  result,  the  downstream  drift  velocity of the  vorticity  goes  to  zero  at 

the  lip  and  the  strong  trailing  vortices  emitted  from  the  blade  tips  tend  to 
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linger  in  the  disk  plane.  This  important  feature of the flow, generally 

speaking,  agrees  with  many  flow  visualization  studies. It is only in the 

limit  of  infinite  advance  ratio  that  the  singularity  disappears. 

2. Drastic  changes in the  flow  pattern  occur as the  advance  ratio is 

slightly  increased  from  zero.  Most  pronounced  of  all  is  the  sudden  appearance 

of  a  "dividing streamtube", outside  of  the  slipstream,  which  moves  forward 

rapidly  toward  the  lip  with  increasing  advance  ratio.  It  appears  that  this 

extreme  sensitivity  of  the  flow  near  the  static  condition  may  be  the  mechanism 

to  help  explain  the  difficulties  of  consistent  propeller  performance  measure- 

ments  at  the  static  condition. 

3. The  streamtube  pattern  for  the  uniform  circulation  case  is  virtually 

independent  of  the  magnitude  of  the  disk  loading.  This is n o t  true  for  the 

case  of  nonuniform  circulation  as  far  as  the  inner  flow, out to  about 30% of 

the  blade  radius,  is  concerned.  This  may  be  a  consequence  of  the  effect  of 

swirl  coupled  with  the  finite  value of circulation  that we assumed  for  the 

first  step in  the  distribution  at  the  axis. 

4. Comparison  of  the  results  for  the  uniform  and  the  nonuniform  cases, 

together  with  the  observed  nature  of  the  interaction  of  adjacent  vortex  tubes, 

indicates  that  the  faster  the  blade  circulation  drops  off  to  zero  at  the  blade 

tips, the  less  severe  the  slipstream  contraction  will  be.  These  results  are 

in  good  accord  with  experiment. 

5. The  computed  flow  patterns  look  quite  reasonable  and  contain  overall 

the  main  features  observed  in  flow  visualization  studies.  One  feature  that  is 

lost, though,  is  the  details of the  dead  air or recirculatory  flow  region in 

the  slipstream  along  the  axis.  This  is  due  to  the  finite  value  of  circulation 

required  at  the axis, within  the  present  numerical  framework,  €or  convergence. 
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APPENDIX A.l 
ALTERNATE  DERIVATION OF EQ.  (3) 

Whereas  Wu's  derivation of Eq. (3) proceeds  directly  from  Lamb's  form 

of the  equations  of  motion, we would  like  to  offer  a  somewhat  different  ap- 

proach. 

First, let  us  make  a  change  of  "meridional"  variables,  from  (x,r)  to 

(sf"). We defi.ne the s variable so that  the  surfaces  of  constant s are 

orthogonal  to the surfaces  of  constant I. Thus, 

VI*VS = Irsr + Ixsx = ursr - vrs = 0 X 

TO relate a/as  and a/aI to a/ax  and  a/ar, we write 

aI/aI = 1 = Irry + IxxI = urry - vrx Y 

as/ay = o = s r + s X r Y   x Y  

Combining Eqs. (A.l.1) and (A.1.3) , we  have 

vrI + uxy = 0 ,  

(A. 1.1) 

(A.1.2) 

(A.1.3) 

(A.1.4) 

and Eqs. (A.1.2) and  (A.1.4)  finally  yield 

a / a l  = (ua/ar - va/ax) / rg 2 (A.1.5) 

where 5 is the  meridional  velocity  component, 5 = (u + v ) % .  2 2  

Now, the  circulation  around  an  elemental  meridional  area  dxdr  is  equal 

to  the 9 component of vorticity, (vx-ur) , times  the  area  dxdr. By means  of 
the  Jacobian,  and Eqs. (A.1.5) , (A. 1.6) , (1) and  (2) , we have 

- u ) dxdr = - (Irr - Yr/r + Ixx) dsdI / r 5 2 
(vx  r 

since 

(A.1.7) 
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so 

dxdr = Ix r -xyrsl dsdY S Y  

= dsdY / rg ( A .  1.9) 

Alternatively,  the  differential of the  circulation  can be computed  as 

ys ds, see Fig.  3b  and  the  accompanying  discussion. Eq. (9) gives ys for 

the  special  case T = r(r), if we replace r and T by -dT  and r, respectively. 
Thus I 

ys ds = (-dr/2nr)  (Or cw) ds / g (A. 1.10) 

Equating  Eqs. (A.1.7) and  (A.l.lO),  and  recalling  that r = -271wrI 

produces  the  desired  result of Eq. (3) . 
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APPENDIX  A.2 
NUMERICAL  CALCULATION OF THE LEGENDRE  FUNCTIONS 

Our  calculation of Qk+ is based  upon  the  relationship  between Qk+ and  the 

complete  elliptic  integrals of the  first  and  second  kind, K and E, respective- 

ly, together  with  the  remarkable  approximations by  C. Hastings  (Ref. 11) for 

these  functions* , each  accurate  to  within  2 X 

Using  nested  multiplication  for  maximum  efficiency, we have,  for all 

values of z > 0, 

where z '  = z /   ( 2 + 2 )  , and A ,  B, C and II are  computed  as  follows , 

a = 0.03742563713 + 0.01451196212~' 

a = 0.03590092383 + alzt 
a = 0.09666344259 + a2z1 

A = 1.38629436112 + a3z' 

1 

2 

3 

bl = 0.03328355346 + 0.00441787012~' 
b2 = 0.06880248576 + biz' 
b = 0.12498593597 + b2z' 

B = 0.5 + b3z' 
3 

c = 0.04757383546 + 0.01736506451~' 
c2 = 0.06260601220 + clz' 
c = 0.4432514'463 + c2z' 

1 

3 
c = 1 + c3zt 

dl = 0.04069697526 + 0.005264496392' 
d2 = 0.09200180037 + dlzt 

(A.2.1) 

(A.2.2) 

(A.2.3) 

(A.  2.4) 

(A.2.5) 

* We might  mention  that  there  is an error  in  the  reproduction  of  Hastings' 
formulas  for K and E in Ref.  12. Specifically,  all  of  the mi's in Eqs. 
17.3.33-  36  should  be  replaced by (1 -m2). 
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d 3  = 0 . 2 4 9 9 8 3 6 8 3 1 0  + d 2 z '  

Q = d,z' ( A . 2 . 6 )  

We would  like to emphasize  the  numerical  importance of treating  the 

argument  of Q 2 $  as (l+z) rather  than  simply z ,  say. The point is that 

Q , + ( l + z )  - -4 en z as z + 0 so that  if  we  compute  first z and  then (l+z) = z ,  
to  compute en z we  must  recompute z = (z-1). For  very  small z ' s  the  process 

of  adding  unity  and  then  subtracting  it  again  leads  to  very  sizeable  round- 

off  errors  in z, and  hence  in lnz, and  hence  in Q, ,+ ( l+z ) .  
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APPENDIX A.3 
NUMERICAL  INTEGRATION SCHEMES. 

Y(x,r) Calculations In MAIN  CODE.  Consider  the  calculation of any of the 

integrals,  say I,, which  occur  in  the  stream function, 

K 

v = l  
~ r ~ / 2  + I, (xfr) (A.3.1) 

For  x = 0, the  singularities  of  the  integrand  are  as  follows: G = 0C.h 5 ) 

as 5 + 0 if r = R,, but i s  regular otherwise, and y, = 0 ( 5 - % )  as 5 -f 0 if 

v = K, but is  regular  otherwise.  Depending  on  these  circumstances,  the  inte- 

grand  is  either 0 ( 5 - %  en 5 ) , O(Ln 5 ) or O ( 1 )  as 5 -+ 0; in any event  it is 

O(Ed3) as 5 -+ m .  Therefore, we  first  introduce  a  new  variable p defined by 

5 = (p'" + p 3 ) .  The effect  of  the p3 term  is  to  compress  the "tail" portion 

so that we can, with  very  good accuracy, replace  the  upper  limit 5 = m by 

p = 5 say. The effect  of  the p1.l term  is  to  alter  the  behavior  at  the  origin 

to O ( P  - 0 - 4 5  en p r ~ ( p  
- 0 . 4 5  ) or O ( 1 ) .  Since  the u r a & A t  possible  singularity  is 

now weatze& than p-% , the p integration  is  well  suited  to G a u n s - C h e b y s h e v  inte- 

gration,  which  is  capable of coping  with  singularities up to  square root 

strength  at one or  both  end  points.  For  this  integration scheme, we  then set 

p = 2 . 5  (-c+l) to  change  the  interval  to -1 5 T 5 1 and obtain, 

where 

(l.lpo'l + 3p 2 ) 

(A.3.2) 

(A.3.3) 

For x > 0, we split the 5 integral  into  two  parts, 0 to  x and x to m ,  

and  proceed  along  lines  similar  to  the  x = 0 case for  each  of  these  parts. 

This gives 
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taking F1 and F2 as 

(A.3.5) 

with  the  change  of  variables  here  of 5 = x(-r+1)/2 in  F1 and 5 = (x+ u + 1-1 ) ,  3 

p = 2.5 (-r+l) in F 2' 
From  experience, we use  L = 80 in Eq.  (A.3.2)  if r # R,, and L = 160 if 

V .  
r = R In Eq.  (A.3.4) , we use L = 40 if r  is n o t  on t,(c) , and L = 80 if 

it in. 

As an  example of the  accuracy  thus  achieved, we note  that  with K = 1, 

T  (x) = 1.0, y1 (x) = 1.0 and A = 0, for example, we  compute Y (0 , 1) = 0.25002 

compared  with  an  exact  value  of 0.25 . 
1 

Actually, it is uneconomical to require  such  a  high  level of accuracy 

for ale steps of the iteration, since  the  first couple of  iterates are not 

particularly close to the  exact  solution  anyway. As a consequence, we have 

introduced  an  integer  input  variable  NSWTH  into our MAIN  CODE.  For  all 

iterations < NSWTH  we  let L = 20  for ale integrals  in  the MAIN CODE, including 

those  in  the  vortex  density calculation, to be discussed below, and  for  all 

iterations 2 NSWTH  we  switch  to  the  more  accurate  scheme. By way  of  com- 

parison,  for  the  above  case  with K = 1 , T1 (x) = 1.0, y1 (x) = 1.0 and A = 0 , 

we  compute Y ( 0 , l )  = 0.25179  for L = 20, compared  with  the  more  accurate  value 

of  0.25002  for L = 160. 

All  Vortex  Density Integrals_In-~AIN I " CODE. For any one of  the  integrals 

involved  in  the  calculation  of  the  vortex density, say, 

we utilize  the  following  Gauss-Chebyshev scheme, 
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(A.3.6) 

where 

F(T) = f l  { x  F[0.5x(~+l);x,r] + 

x  F[o.5x(~+3) ;x,rl + 15v2F[  (2x+v 3 1 ;x,rl } (A.3.7) 

with v = 2.5(r+l)  and L = 20 for  all  iterations < NSWTH, and L = 40  for all 

iterations L NSWTH. 

Y(x,r)  Calculations  In  STREAMTUBE  CODE.  For  x 5 0 we compute  our Y ' s  

according to Eqs. (A.3.1) - (A.3.3) , and  for x > 0 according  to  Eqs.  (A.3.1) , 
(A.3.4)  and  (A.3.5).  If 1x1 < 0.05,  we  use L = 160 and  if 1x1 0.05,  we 

use L = 80. 

Velocity ~ Integrals  In  VELOCITY BOX CODE. To determine  the  velocity  com- 

ponents, we have  to  evaluate the expressions, 

, r > O  

W 

= x + -  ykdS 1 r = O  
k=l 

= o  , r = O  (A.3.8) 

In these  equations,  Gr and Gx may  be derived  from Eq.  (5)  with  the  help  of 

Eq.  (13).  We  find that Gr  is  identical to GT, see Eqs. (14) and  (15) , if  we 
replace  t by  tk  and T by r and interpret all lengths  in  their  nondimensional 

form. For Gx we obtain 
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.. .. . 

(A.3.9) 

in which  the  argument z2 is  identical  to z of Eq. (6) with p replaced by  tk. 

Instead  of  a  Gauss-Chebyshev  scheme  for  the  integrals  appearing in 

E q s .  (A.3.8), better  accuracy  was  achieved by splitting  each  integral  into 

thirteen  parts,  from 0 to 0.001, 0.001 to 0.01, 0.01 to 0.1, 0.1 to  0.5, 0.5 

to 1.1, 1.1 to  1.19,  1.19  to  1.2, 1 . 2  to 1.21, 1.21 to 1.3, 1.3 to 2.0, 2.0 to 

10, 10 to  50,  and  50  to  200,  and  then  using  a  ten  point  Gauss-Legendre  formula 

on each  part. 

As a  measure  of  the  accuracy of this  approach,  consider  again  the  simple 

special  case K = 1, T (x) = 1.0 , y (x) = 1.0 and X = 0 .  We  compute 

u(O,O.5),  u(O,O.9),  u(O,O.99)  and ~(0~0.999) all  equal  to  0.499992, 

with  the  exact  value 0.5, and  u(0,l.O) = 0.24995,  compared  with  the 

value  0.25 . 

1 1 u(O,O) 

compared 

exact 
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APPENDIX A.4 
COMPUTER  CODES  AND  LISTINGS 

Description Of MAIN  CODE. The MAIN CODE, written in Fortran IV for  the 

IBM 1130 Computer  at  Sage  Action,  Inc.,  contains  the  iterative  solution  for 

the  shapes Tin' (x) and  vortex  densities  yin) (x) , as  described  in  the  foregoing 
THEORETICAL  DEVELOPMENT. 

The physical  input  consists  of A ,  K, the Rkls, and  the  rk's  for  k = 1 

through K, where RK = 1.0 . Important  non-physical  input  includes  N  and  the 

associated B V 1 s  and  c ' s t  N'  and  the  associated a V 1 s ,  M and  the  associated 

6, s , and  the  initial  vortex  density  and  shape  coefficients  a ( O )  and bkj . 
Generally, all of the  a ( " ' s ,  b(')'s = 0 ,  as  implied  by  Eqs. ( 3 4 )  and ( 3 5 )  , 
but  this  need  not  be  the  case. 

j 
( 0 )  

kj 

kj  kj 

Maximum  allowable  values  of K, N, N'  and  M  are K 5 18, N 5 11, N' 5 8 

and M 5 10. 

As a  measure  of  the  computing cost, the  machine  time per iteration  for 

Cases 1 and 2 was  approximately 10 minutes  and 3 hours  respectively,  with  the 

more  accurate  final  iterations  taking  about  twice  as  long.  This  is  not  as 

bad  as  it sounds, however,  since  the  IBM 1130 is a  relatively  slow  machine, 

with  a  correspondingly  modest  hourly  cost. 

Finally, as  a  word  of  caution, we note  that  convergence  of  the  iteration 

depends  somewhat on the  choice of the ,C3v's, c ' s  and 6 v ' s .  The  values  used 

in  Cases 1 and 2 were  arrived  at  essentially by trial, but  they  seem  to  work 

well  for  a  variety of other  cases  as  well. 

j 

Description  Of " STREAMTUBE  CODE.  The  purpose of the  STREAMTUBE  CODE is to 

compute  the  streamtube  patkern  corresponding  to  the  vortex  wake  configuration 

obtained  from  the  MAIN  CODE. 

Basically, we first  compute Y(x,r) at 25 or less  specified  (x,r)  "field 

points", and  then  search  for  those Y values by interpolation  throughout  a 

network  of  computed  values.  The  "interpolation net" is  broken  into  two 

regions.  Region 1 consists  of  the  intersection  of  the  prescribed  x  and  r 

values; 20 or  less  negative  x's,  say  from 0 . 0  back  to -0.6, and 25 or less r's, 

say  from 0 . 0  up to 1.5 - not  necessarily  evenly  spaced.  Region 2 is  defined 

by 27 or less  positive  x's,  say  from 0 . 0  to 1.2, and 20 or  less  evenly  spaced 
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r's, from  TK(x)  up to some prescribed constant such as 1.5 . Since  Region 1 

is  rectangular,  we use three  point  interpolation in both x and r  there,  whereas 

we interpolate  only  in  r in Region 2 because  of the nonlinear  slipstream 

boundary. The interpolated  locations  are  then  printed out. 

To trace  these  streamtubes in the n l i p o t t r e a m  region, x 0 and 

0 5 r < TK(x),  we  usually  interpolate by hand  from  the  interpolation net 

printed out in  the  last  iteration  of  the MAIN CODE. For the  special case of 

K = 1, though,  we can simply  rerun  the  STREAMTUBE  CODE  with  the  constant  r 

boundary  of  Region 2 replaced by r = 0 and  avoid  excessive  duplication  of  the 

upstream  calculation by use of  only one (x,r) point in Region 1. 

Besides  the  field  points and net points, the  input  consists of A ,  N, N', 

M and K and  the  Rk's,  rk's,  a I s ,  b . ' s  and c 's. 
kj kl j- 

Description  Of  VELOCITY  BOX  CODE. The VELOCITY  BOX CODE simply  computes 

the  meridional  velocity (u2 + v )' and its  inclination tan-'(v/u) at arbitrarily 

many (x,r) field  points on the  propeller disk, x = 0 and 0 5 r < 1, and on the 

"box" defined by x = -0.6 and 0 5 r 5 1.5, -0.6 2 x 5 1.2  and r = 1.5, and 

x = 1.2 and 0 5 r 5 1.5 . 

2 

The input  consists  of  the  (x,r)  field  points,  plus A ,  N, N', M and K and 

the  Rk's, Tk's, a ' s ,  b ' s  and c I s .  
kj  kj j 

All three  codes  use  extended  precision. 

Computer  Code  Listings.  Listings of the  three  computer  codes  are re- 

produced on the  following  pages. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 

I C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

M A I N   C O D E  

M P R O G  

T H E   M A I N   C O D E   C O N S I S T S   O F   T H R E E   D I S T I N C T   P R O G R A M S   L I N K E D  

MPROG I S  THE  PROGRAM I N I T I A L L Y   E X E C U T E D a   I T   D I R E C T S  
I N I T I A L I Z A T I O N I  UPON  COMPLETIONt  A L I N K  IS TAKEN  TO 

TOGETHER - 
A L L   I N P U T  AND 
SP ROG 

SPROG  CONTROLS  THE  SHAPE  CALCULATION  PORTION  OF  THE  MAIN CODE. UPON 
C O M P L E T I O N   O F   E A C H   I T E R A T I O N S  A L I N K   I S  TAKEN  TO GPROGm 

GPROG D I R E C T S   T H E   V O R T E X   D E N S I T Y   C A L C U L A T I O N   O F   T H E   M A I N  CODE. UPON 
C O M P L E T I O N   O F   E A C H   I T E S A T I O N v   T H E  MOST R E C E N T   S E T   O F   C O E F F I C I E N T S  
ARE  STORED. I F  MORE ITERATIONS  ARE  TO  BE  PERFORMED9 A L I N K  IS TAKEN 
BACK TO SPROG. 

A L L   I N P U T   F O R   T H E   M A I N  CODE I S  DONE I N  S U B R O U T I N E   I N I T L m  
I N P U T   V A R I A S L E S   A R E   A S   F O L L O W S  - 
V A R I A B L E   N A M E  

I M  
I D  
I Y  

KASE 
LAMBA 

NN 

NP 

MM 

KK 

I T B E G  
I TEND 
NPLOT 
NSWTH 

RR 
CAPGY 

BETA 

ALPHA 

D E L T A  
c 

B 
A 

DESCRIPTION 
"""""""""""""""""""""""""""""" 

TWO D I G I T  MONTH OF THE  YEAR 
TWO D I G I T   D A Y   O F   T H E   M O N T H  
TWO D I G I T  YEAR 
T E N   C H A R A C T E R   C A S E   I D E N T I F I C A T I O N  
ADVANCE R A T I O  
NUMBER  OF  COLLOCATION  POINTS I N  SOLUTION  OF  VORTEX  DENSITY 

FOR  OUTER  VORTEX  TUBE - ALSO NUMBER OF TERMS I N  
VORTEX  DENSITY  FUNCTION FOR  OUTER  VORTEX  TUBE 

NUMBER  OF  COLLOCATION  POINTS I N  SOLUTION  OF  VORTEX  DENSITY 
FOR INNER  VORTEX  TUBES - ALSO  NUMBER OF TERMS I N  
VORTEX  DENSITY  FUNCTION  FOR  INNER  VORTEX  TUBES 

I N T E R P O L A T I O N  - ALSO  NUMBER OF TERMS I N  STREAM 
FUNCT I ON 

D I S T R I B U T I O N  

NUMBE'? OF A X I A L   S T A T I O N S   U S E D   I N   S T R E A M   F U N C T I O N  

NUMBER  OF  STEPS I N  THE  P IECEWISE  CONSTANT  C IRCULATION 

@EGITURIr\;G I T E R A T I O N  NUMBER 
E N D I N G   I T E R A T I O N  NUMBER 
NUMBER  OF I T E R A T I O N S  TO BE  PLOTTED ON  ONE G R I D  
RUMBER  OF I T E q A T I O N  AT  WHICH  INTEGRATION  ACCURACY IS TO 

R A D I A L   L O C A T I O N S   O F   S T E P S   I N   C I R C U L A T I O N   D I S T R I B U T I O N  
P I E C E W I S E   C O N S T A N T   C I R C U L A T I O N   D I S T R I B U T I O N  
A X I A L   S T A T I O N S   U S E D   I N   S O L V I N G  FOR  THE  VORTEX  DENSITY 

A X I A L   S T A T I O N S   U S E D   I N   S O L V I N G  FOR  THE  VORTEX  DENSIT IES 

A X I A L   S T A T I O N S   U S E D   I N   S T R E A M   F U N C T I O N   I N T E R P O L A T I O N  
EXPONENTS I N   M A T C H I N G   F U N C T I O N   F O R   V O R T E X   D E K S I T Y   O N  

C O E F F I C I E N T S   I N   R E P R E S E N T A T I O N  OF VORTEX  TUBE  SHAPE 
C O E F F I C I E N T S   I N   R E P R E S E N T A T I O N   O F   V O R T E X   D E N S I T Y  

BE  INCREASED 

ON  THE  OUTER  VORTEX  TUBE 

ON ALL  BUT  THE  OUTER  VORTEX  TUBE 

OUTER  VORTEX  TUBE 

NOTES  ON  INPUT - 
1 I F  K K = 1 9  NP AND  BETA  NEED  NOT  BE  SPECIF IED 
2 I F   I T B E G = O s  A AND B C O E F F I C I E N T S   A R E   S E T   T O   Z E R O  
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,. .. . ..... . ..-. 

REAL  LAMBA 
COMMON I M ~ I D ~ I Y ~ K A S E ( ~ ~ ~ L A M B A B N N ~ N P ~ M M * K K ~ I R E C ~ ~ I R E C ~ ~  

* R R ~ 1 8 ! t C A P G M ~ 1 9 ~ r G M I N F ~ 2 t l 8 ~ , A ( 1 T ) , B ( l O ~ t C ~ l l ~ t  
* I T H E G r I T E N D t N P L O T r N S W T H ~ N P S I ~ I T E R T t P S I N F ~ l ~ ~ t B E T A ~ l l ~ r A L P H A ~ 8 ~ t  
* D E L T A ~ ~ ~ ~ ~ T R H S ~ ~ ~ ~ ~ ~ ~ ~ T L H S ~ ~ ~ ~ ~ T A U ~ ~ ~ ~ ~ B ~ A U ~ ~ ~ O ~ B T A U ~ ~ ~ O ~  

t 4(1t320rUtIREC41t  5(10t323rUtIREC5J 
DEFINE  FILE  l(18r32rU1IRECl)r  2(36t33tU1IREC2)r  3(lr320tUeIREC3)t 

CALL I N  I TL 
CALL  GAMIN 
JTERTZITBEG-1 
CALL  SPLOT 
03 1C  K=lrKK 
CALL  SPLOT(K1 

DO 20 KtltKK 
CALL  GPLOT ( K  1 

10  CONTINUE 

20 CONTINUE 
CALL  EPLOT(lt5rOtOrOl 
CALL  LINK(SPR0G) 
END 

C S P R O G  
REAL  LAMBA 
COMMON I M r I D t I Y t K A S E ( 5 ) r L A M B A r N N r N P t M M t K K t I R E C l t I R E C 2 t  

* R R ~ 1 8 ~ t C A P G M ~ 1 9 ~ r G M I N F ~ Z r l 8 ~ t A o , ~ ~ l O ~ r C ~ l l ~ r  
* I T R E G ~ I T E N D ~ N P L O T ~ N S ~ T H ~ N P S I I I T E R T ~ P S I N F ~ ~ ~ ~ ~ B E T A ~ ~ ~ ~ ~ A L P H A ~ ~ ~ ~  
* D E L T A ~ l O ~ ~ T R H S ~ l l t l l ~ ~ T L H S ~ l l ~ ~ T A U l ~ ~ O ~ t T A U 2 ~ 4 O ~ r T A U 3 ~ 2 0 ~  

ii 4(1,32OrU1IREC41*  5(10t320tU*IREC5) 
DEFINE  FILE  l(ler32tUtIRECl)r  2(36*33,U1IREC2lr  3(lr32OtUtIREC3)t 

CALL  SCALE(l.OtloOt5rOtOoO) 
ITERT=ITEST+l 
CALL  FDLOT 
CALL  PS IN1 
CALL PSIN2 
DO 10  K=1 tKK 
CALL  REGIN  (K 1 
CALL  ESOLV(TRHSrTLHSt6tMM) 
WRITE(l'K)(B(J)tJ=ltMM) 
CALL  SPLOTlK) 

CALL  EPLOT ( 1 e5 rOt0.0 1 
CALL  LINK(EPR9EI 
END 

10 CONTINUE 

C G P R O G  
REAL  LAMBA 
COMMON I M ~ ~ D ~ I Y ~ K A S E ( ~ ) ~ L A M B A ~ N N ~ N P ~ M M ~ K K I I R E C ~ ~ I R E C ~ ~  

+ R R ~ 1 8 l r C A P G M ~ 1 9 1 t G M I N F ~ Z t l 8 ~ t A ~ l l ~ ~ ~ ~ l O ~ t C ~ l l ~ t  
* I T S E G r I T E N D t K P L O T ~ N S W T H t N P S I r I T E R T ~ P S I N F ~ l 8 ~ ~ B E T A ~ l l ~ e A L P H A ~ ~ ~ t  
* D E L T A ~ l O ~ ~ T R H S ~ l l ~ l 1 ) , T L H S ~ l l ~ ~ T A U l ~ ~ O l e T A U 2 ~ 4 O ~ t T A U 3 ~ 2 O ~  

* 4(lt320tU*IQEC4)r  5(10t320tUtIREC5lr 
* 6(18St32tUtIREC6)t  7(183r33tUtIREC71 

DEFINE  FILE  l(18t32rUrIRECl)r  2(36*33tUrIREC2)r  3(lt320~UtIREC3)r 

CALL  SCALE(l.O~loOt5~CrOoO) 
CALL  GAMIN 
K t  ES?=KK-l 
IFIKLES1)40t30r13 

10 DO 20  KzlrKLES1 
CALL GAlrlK1 I K 1 
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2 0  
30  

40 

5 0  

60 

70 

C A L L   E S O L V ( T R H S t T L H S t A t N P )  
K 2 = 1 6 + K  
WRITE(2'K2)(A(J)tJ=ltNP) 
C A L L   G P L O T ( K 1  
C O N T I N U E  
C A L L   G A M M 2 t K K )  
C A L L   E S O L V ( T R H S t T L H S t A t N N )  
K 2 = 1 8 + K K  
WRITE(2'KZ)(AIJ)tJ=ltNN) 
C A L L   G P L O T   ( K K  1 
DO 50  K - l t K K  
KZ=18+K 
R E A D ( Z 6 K 2 ) ( A I J ) r J = l t N N )  
W R I T E ( 2 I K ) ( A ( J ) t J = l t N N )  
C O N T I N U E  
C A L L   P U T C F  
I F ~ I T E R T - I T E N D 1 6 0 t 7 0 t 7 0  
C A L L   E P L O T I l t 5 e O t O e O )  
C A L L   L I N K ( S P R 0 G I  
C A L L   E P L O T ( l t l 6 r 0 ~ 0 e O )  
C A L L   E X I T  
END 

S U B R O U T I N E   P S I N l  
REAL  LAMBA 
COMMON I M B I D B I Y ~ K A S E ( ~ ) ~ L A M B A ~ N N I N P I " I K K B I R E C ~ B I R E C ~ ~  

* R R ~ 1 8 ) t C A P G M ( 1 9 ) r G M I N F ( 2 ~ 1 8 ~ t A ~ l l ) t B ( 1 0 ~ t C ~ l l ~ r  
* I T B E C ~ I T E N D ~ K P L O T ~ N S ~ T H ~ ~ P S I ~ I T E R T ~ P S I N F ~ ~ ~ ~ B B E T A ~ ~ ~ ~ ~ A L P H A ~ ~ ~ ~  
+ D E L T A ~ ~ O ~ ~ T R H S ~ ~ ~ ~ ~ ~ ~ B T L H S ~ ~ ~ ~ ~ T A U ~ ( B O ~ ~ T A U ~ ~ ~ O ~ ~ T A U ~ ~ ~ O ~  

C E Q U A T I O N   2 3  

10 

2 0  

30 

40 

3000 
3001  

W R I T E ( 3 r 3 0 0 0 )  
C A L L   T A U F T ( l t L 1 )  
C A L L   T A U F T ( 2 r L 2 )  
DO 40 K = l t K K  
P S I N F ( K ) = O e O  
DO 3 0   F ! U = l t K K  
I F ( N U - K ) 2 0 t l O r 2 0  
C A L L  O N I N T ( T A U 1 t L l r R R I K ) t N U t S U M )  
P S I N F ( K ) = P S I N F I K ) + S U M  
GO T O  30  
C A L L  O N I N T ( T A U 2 r L 2 r R R ( K l r N U t S U M )  
P S I N F ( K ) = P S I N F ( K ) + S U H  
CONTINUE 
PSINF(K)=LAMBA*RR(K)**2/2mO+PSINF(K) 
WRITE(3t3001)RR(K)rPSINF(K) 
CONT I h U E  
RETURN 
F O R M A T ( / / #   P S I   A T  X = 0 AND R = R S U B   K O / )  

END 
F O R M A T ( ~ O X ~ ' P S I ( O B ' B F ~ . ~ ~ ' )  = ' t E 2 O e l l )  

S U B R O U T I N E   O N I N T ( T A U v L L r R s K t S U M )  
D I M E N S I O N   T A U ( 1 )  

C I N T E G R A T I O N   F O R   E Q U A T I O N   2 3  
SUM=O e 0 
DO 10 LC l rLL  
S l = Z r 5 + ( ? r O + T A U ( L ) )  
5 2 = Z e 5 + ( 1 e O - T A U ( L I )  
X l = S l + * l * l + S l + S 1 + S 1  
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X2=S2** l , l+S2*S2*S2 
T l = T T F C T ( K t X l )  
T 2 = T T F C T ( K r X 2 1  
G 1 = C G F C T ( X l r T l r O o O r R )  
G ~ = G G F C T ( X ~ ~ T ~ ~ O * O I R )  
T E R M l = 1 ~ 1 * S 1 * * 0 . 1 + 3 o O ~ S ~ * ~ l  
TERb!2~1.1*S2**0*1+30O*S2*S2 
G A P l = G M F C T ( 2 r K r X l )  
G A M 2 = G M F C T ( 2 r K t X 2 )  
ROOT~SQRT(lrO'TAU(L)**2~ 
F 1 = R O O T * G ~ * T E R M l * G A M 1  
FZ=ROOT*GZ+TERM2*GAMZ 
SUM=SUM+Fl+FZ 

10 CONTIIUUE 

RETURN 
EN@ 

S U M = S U M * 3 0 9 2 6 9 9 0 8 1 6 / L L  

S U B R O U T I N E   P S I N Z  
REAL  LAMRA 
D I M E N S I O N   T T ( 3 7 ) r P S I ( 3 7 )  
COMMON IMtIDtIYtKASE(5)rLAMBAtNN rNP rMM KK r I REC2 r 

* I T ~ . E G ~ I T E N D r ~ P L O T ~ N S ~ T H r ~ P S I ~ I T E R T ~ P S I N F ( l 6 ~ r B ~ T A ~ l l ~ r A L P H A ~ 8 ~ t  
+ D E L T A ~ l O ~ ~ T R H S ~ 1 1 r 1 l ~ ~ T L ~ S ~ ~ l ~ t T A U 1 ( 8 0 ~ r T A U Z ~ 4 O ~ ~ T A U 3 ~ 2 0 ~  

C E Q U A T I O N  A3.1 
W R I T E L 3 r 3 0 0 0 )  
C A L L   T A U F f ( 2 r L 2 1  
C A L L   T A U F T ( 3 t L 3 )  
T T ( l ) = O a O  
P S I ( 1 ) = 0 . 0  
DO 50  J = l r M M  
DC 20 I = Z r N P S I  
P S I ( I ) = O * O  
I F (  1 - 2 * ( 1 / 2 )   ) 2 0 t 1 0 r 2 0  

10 T T ( I + l ) = T T F C T ( ( ! + 1 ) / 2 r D E L f A o  
T T ( I ) = ( T T ( I + l ) + T T ( 1 - 1 ) ) / 2 . 0  

20 CONTINUE 
DO 30 K = l t K K  
C A L L  T h ' I N T ( T A U 2 r L 2 r D E L T A ( J ) r K r T T ( 2 * K + l ) r S U M )  
PSI(2*K+l)=PSI(2*K+l)+SUM 
C A L L  T H I N T ( T A U 3 r L 3 r D E L T A ( J ) r K r T T r P S I r f ' d P S I )  

30 C O N T I N U E  
DO 40 1 = 2   t N P S I  
PSI(I)=LAMBA*TT(I)++2/2oO+PSI(I) 

40 CONTINUE 
W R I T E ( 3 r 3 0 0 1 ) D E L T A ( J ~ t ( T T ~ I ) r P S I ( I ) r I l l r N P S I ~  
WRITE(5'J)(PSI(Il~TT(I)~I=lrNPSI) 

RETURN 
50 CONTINUE 

3000 F O R M A T I / / / '   P S I   N E T  FOR I N T E R P O L A T I O N ' / / ~ ~ X I ~ H X ~ ~ X ~ ~ H R I ~ ~ X I B H P S ~ ( X  
* r R )  1 

END 
3 0 0 1  F O R M A T ( 5 X ~ 2 F 1 0 ~ 5 t E 2 0 ~ l O / ( l 5 X ~ F l O m 5 ~ E 2 O ~ l O ~ ~  

S U R R O G T I N E  T W I N T ( T A U r L L r X r K t R t S U M )  
D I M E N S I O N   T A U ( 1 )  

C I N T E G R A T I O N   F O P   E Q U A T I C N   A 3 0 1  WHEN R IS ON  VORTEX  TUBE K 
SUM=C*O 
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DO 10 L = l r L L  
X ~ = X * ( ~ O O + T A U ( L ) ) / ~ O O  
X 2 = X * ( l r O ~ T A U I L ) ) / 2 r O  
T l = T T F C T ( K g X l )  
T Z = T T F C T ( K o X Z )  
S U M = S U ~ + X / ~ D ~ + S Q R T ( ~ ~ O - T A U ( L ) * + Z ~ * ~ G G F C T ~ X ~ ~ T ~ ~ X ~ R ~ * G M F C T ~ ~ ~ K ~ X ~ ~ +  * G G F C T ( X Z , T Z , X r R ) + G M F C T ( Z , K r X 2 ) )  
S l = Z r 5 + ( 1 o O + T A U ( L ) I  
S 2 ~ 2 0 5 + ( 1 r 0 ~ T A U ( L ) )  
X l = X + S 1 + S 1 + S 1 * S 1  
X2=X+S2+S2*S2+S2 
T l = T T F C T [ K r X l )  
T Z r T T F C T L K t X Z )  
S U M + S U M + Z O ~ + S Q R T ~ ~ O O - T A U I L ) + + Z ~ +  * ( G G F C T ( X ~ ~ T ~ ~ X ~ R ) * ( ~ . ~ + ~ ~ O + ~ O O ~ S ~ * S ~ ~ * G M F C T ( Z ~ K ~ X ~ ~ +  

* G G F C T ( X ~ ~ T Z ~ X ~ R ) * ~ ~ O O + ~ O O * S ~ * S ~ ~ * G M F C T ~ Z ~ K ~ X ~ ) )  
10 CONTINUE 

S U M = S U M * l r 5 7 0 7 9 6 3 2 6 8 / L L  
RETURN 
END 

SUBROUTINE T H I N T ( T A U t L L r X r K t T T r P S I * N P S I )  
DIMENSION T A U ( l I ~ T T ( l l r P S I ( 1 )  

DO 10 1 = 2 t N P S I  
PSI(I)=PSI(I)+LL/105707963268 

DO 40 L = l r L L  
S 3 = 2 r 5 * ( l o O + T A U ( L ) )  
S 4 = 2 . 5 * ( 1 e O - T A U ( L ) )  
X l = X * ( l r O + T A U I L ) ) / 2 r O  
X 2 ~ X + ( l r O - T A U ( L ) ) / 2 r O  
X3=X+S3+S3+S3+S3 
x4=x+54+s4+s4+s4 
T l = T T F C T ( K r X l )  
T Z = T T F C T ( K r X 2 )  
T 3 = T T F C T (  K r X 3  ) 
T 4 c T T F C T   ( K   r X 4  1 
G A M l r G M F C T 1 2 r K t X l )  
G A M Z f G M F C T ( 2 t K r X 2 )  
G A M 3 = G M F C T ( 2 r K t X 3 )  
G A M 4 = G M F C T ( Z t K r X 4 )  
ROOT~SQRTllrO-TAU(LI*~Z) 
T E R M ~ ~ R ~ ~ T + ~ o ~ * X ~ G A M ~  
TERM2=ROOT+O*5*X+GAM2 
T E R M ~ = R O O T * ( ~ O ~ + ~ ~ ~ * S ~ * S ~ ) * G A M ~  
T E R M ~ = R O O T + ( ~ O ~ + ~ O ~ * S ~ * S ~ ) * G A M ~  
DO 30 I s Z r N P S I  
I F ( 2 * K + l - I ) 2 0 r 3 0 t 2 0  

P S I I I ) ~ P S I ( I ) + G G F C T ( X l r T l r X r R ) ~ T E R M l + G G F C T ( X ~ r T ~ ~ X r R ) * T E R M 2 +  

C I N T E G R A T I O N   F O R   E Q U A T I 9 N   A 3 0 1  WHEN R I S  NOT ON VORTEX  TUBE K 

10 CONTINUE 

20 R = T T I  I I 

* G G F C T ( X ~ ~ T ~ S X ~ R ) * T E R M ~ + G G F C T ( X ~ ~ T ~ ~ X ~ R ) * T E R M ~  
30 C O N T I N U E  
40 CONTINUE 

DO 50  I r 2 r N P S I  
PSI(I)=PSI(I)+1~5707963268/LL 

50 CONTINUE 
RETURN 
END 
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S U B R O U T I N E   R E G I N ( K )  
REAL  LAMRA 
D I M E N S I O N   T T ( 3 7 ) t P S I ( 3 7 )  
COMMON IMtIDrIYtKASE(5)rLAMBAtNNtNPrMMtKKrIREClrIREC2t 

* R R ~ 1 B ~ t C A P G M ( 1 9 ) ~ G ~ I N F ~ 2 r 1 9 ) r A ~ l l ) t B ~ l O ~ t C ~ l l ~ r  
~ I T 3 E G r I T E N D r N P L O T r N S h ' T H ~ ~ P S I t I T ~ R T r P S I N F ~ l 8 ~ r ~ E T A ~ l l ~ t A L P H A ~ 8 ~ t  
* D E L T A ~ l O ) r T R H S ~ l l r l l ~ r T L ~ S ~ l l ~ t T A U l ~ ~ O ~ r T A U ~ ~ 4 O ~ r T A U 3 ~ 2 O ~  

C S H A P E   I N T E R P C L A T I O N   F O R   E Q U A T I D N  36  
READ(3'1)((TRHS(JtNU)tNU=ltMM)gJ=l*MM) 
DO 60 J = l r M M  
READ(5'J)(PSI(L)tTT(L)rL=ltNPSI) 
EO 10 N R E G b i z 3 r N P S I t 2  
IF(PSI(NREGN)-PSINF(K))lOt20r20 

GAMSMZO a 0 
DO 1 5   K S U M z K r K K  
G A M S M = G A M S M + G M F C T ( 2 r K S U M m B E T A ( J ) )  

T L H S ( J ) = S Q R T L T T F C T L K I D E L T A I J ) 1 + + 2 + 2 . 0 + ( P S I N F ( K ) - P S I ( 2 * K + l ) ) /  

10 CONTINUE 

1 5   C O N T I N U E  

* ( L A M B A + G A M S M + I D E L T A ( J ) + O O ~ ~ ) / ( D E L T A ( J ) + O ~ ~ O ) ) ) - R R ( K )  
GO TO 50  

20 T l = T T ( N R E G N )  
T 2 = T T ( N R E G N - 1 1  
T 3 = T T ( N X E G N - 2 )  
P l = P S I ( N R E G N )  
P Z = P S I I N R E G N - l )  
P 3 = P S I ( N R E G N - 2 )  
CCOEF=(P3-Pl+(Tl-T3)*(Pl-P2)/(Tl-T2))/ f T l * T Z - T l * T 3 - T Z * T 3 + T 3 + T 3 )  
B C O E F = ( P l - P 2 ) / ( T l - T 2 ) - C C O E F + O  
A C O E F = P 1 - B C O E F * T 1 - C C O E F * T l * T l  
TPLUS~SQRT~BCOEF*BCOEFI4 rO+CCOEF+(ACOEF*~ACOEF~PSINF~K~~~ 
TMINS=-(BCCEF+TPLUS)/(2aO*CCOEF) 
TPiUS=-(RCCEF-TPLUS)/~2aO*CCOEFI 
I F ( T l - T P L U S ) 3 0 t 4 0 t 2 5  

2 5  I F ( T P L U S - T 3 ) 9 0 t 4 0 t 4 0  
3 0   T L H S ( J ) = T M I N S - R R ( K )  

GO TO 5 0  
4 C  T L H S ( J ) = T P L U S - R R ( K )  
5 0   C O N T I N U E  

NREGN=NREGN/2 
60 C O N T I N U E  

RETURN 
END 

F U N C T I O N   G G F C T ( X 1 r T r X X t T T )  

T E R M l = T T + T  
D E L = ( X X - X 1 ) * + 2  
Z=((TT-T)**2+DEL)/(2aO*TERMl) 
CALL  QQPMH(ZrQPHtQMH)  
C G F C T = S Q R T ( T E R M 1 ) / 6 r 2 8 3 1 6 5 3 0 7 2 * Q P H  
RETURN 
END 

C E Q U A T I O N  5 

S U B R O U T I N E   S P L O T t K )  
REAL  LAMRA 
D I M E N S I O N   X W ( l l ) r T T W ( l l )  
COMMON I M t I D t I Y t K A S E ( 5 ) r L A M B A ~ N N r N P r M M r K K r I R E C 1 t I R E C 2 ~  

~ R H ~ 1 ~ ~ ~ C A P G M ~ 1 9 ~ t G M I N F ~ 2 t l ~ ~ t A ~ l l ~ r ~ ~ l O ~ r C ~ l l ~ t  
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* I T B E G r X T E N D r N ~ L O T r N S ~ ~ T H r ~ ~ S I r Z T E R T r P S X N F f l 8 ~ r B E T A ~ l l ~ r A ~ P H A ~ 8 ~ r  
* D E L T A ~ 1 C ~ e T R H S ~ l l r l l ~ r T L H S ~ l l ~ e T A U l ~ 8 0 ~ r T A U 2 ~ 4 O ~ r T A U 3 ~ 2 0 ~  

C P R I N T  AND PLOT  ROUTINE FOR VORTEX  TUBE  SHAPE 
X W ( l ) = 0 . 0 1  
DO 8 J=lr lO 
I F ( J - M M 1 4 r 4 t 6  

4 X W ( J + l ) = D E L T A ( J )  
GO TO 8 

6 X W ( J + 1 ) = - 2 r 0 * * 1 2 5  

8 C O N T I N U E  
T T W ( J ) = - Z a O + * 1 2 5  

K G O = I T E R T - I T B E G + l  
KGO=KGO-(NPLOT+l)+(KGO/(NPLOf+l)) 
KGO=K-l+((KG0+2)*(KG0+3))/2 
K P E N = l  
DO 40 1- l r lO l  
X C = ( I - l r 0 1 / 5 0 . 0  
Y C = T T F C T ( K r X C I  
I F ( Y C ) 3 0 r 1 0 , 1 0  

10 I F ( l ~ O - Y C ~ 3 0 r 2 O t 2 0  
20 XP=10-XC*5.0 

YP=YC*SrO 
C A L L   E P L O T ( K P E N , Y P r X P )  
KPEN=2 
IF(I-KGO*(I/KG0))40t30r40 

30 K P E N = l  
4 0   C O N T I N U E  

50 W R I T E ( 3 e 3 0 0 1 ) ( X W ( I ) t I n l r l O )  
60 MPLUS=MM+l  

I F ( K - 1 1 5 0 r 5 0 r 6 0  

DO 70 I m 1  rMPLUS 
T T W ( I ) = T T F C T ( K t X W ( I ) )  

T K I N F = T T F C T ( K t 1 0 0 0 ~ 0 )  
W R I T E ~ 3 ~ 3 0 0 2 ~ K ~ ~ T T W ~ I ~ r I ~ l r l O ~ ~ T K I N F r ~ B ~ J ~ r J ~ l ~ M M ~  
W R I T E ( 3 r 3 0 0 3 )  
RETURN 

70 CONTINUE 

3 0 0 1  FORMAT(///12XrlHXr2X~lOF9a3r5X~4HINF./) 
3 0 0 2   F O R M A T I B H  ' T S U B 1 1 2 ~ 5 X , l l F 9 . 5 / 2 H   ' / l l H  ' B C O E F F S t 9 X t 5 E 1 8 . 1 0 /  

* ( 2 H   ' r 1 8 X r 5 E 1 8 m l C ) )  
3 0 0 3   F O R M A T ( 2 H  ' / 2 H  * )  

END 

S U B R O U T I N E   G A M M l ( K )  
REAL  LAMBA 
COMMON IMeIDeIYrKASE(5)eLAM6ArNN~NPrMMrKKrIREClrIREC2r 

+ R R 1 1 8 ) ~ C A P G M ( 1 9 ) ~ C M I N F ( 2 ~ 1 8 ~ r A ~ l l ) ~ B ~ l O ~ r C ~ l l ~ r  
* I T B E G r I T E ~ D e N P L O T r N S W T H r N P S I ~ I T E R T r P S I N F ~ l 8 ~ r B E T A ~ l l ~ ~ A L P H A ~ 8 ~ r  
* D E L T A ~ l O ~ r T R H S ~ l l ~ l l ~ r T L ~ S ~ l l ~ r T A U l ~ ~ O ~ r T A U 2 ~ 4 O ~ r T A U 3 ~ 2 0 ~  

C E Q U A T I O N  4 1  
CALL T A U F T ( 3 t L 3 )  
DO 2 0   J = l r N P  
T T = T T F C T ( K r A L P H A ( J ) )  
F A C = S Q R T ( l m O + T P F C T ( K , A L P H A ( J )  ) * * 2 )  
FF=ICAPGM(K)-CAPGM(K+l)-(CAPGM(K)**2-CAPGM(K+l)+*Z)/ * (12.5663706144*TT*+2))/(6r2831853072+GMINF~2~K)*FAC) 
T L H S I J I = O . O  
DO 10 N U - l r K K  
CALL F O I N T ( O ~ T A U ~ ~ L ~ ~ A L P H A ~ J ) ~ T T ~ N U B S U M ~  
T L H S ( J ) = T L H S f J ) + S U M  
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10 C O N T I N U E  

20  C O N T I N U E  
T L H S ( J ) = F F / ( L A M B A + T L H S o / T T ) - l e O  

R E A D ( 4 ' 1 ) ( ( T R H S ( J , N U ) r N U r l r N P ) t J t l , N P 1  
RETURN 
END 

S U B R O U T I N E   G A M M 2 ( K I  
REAL  LAMRA 
COMMON I M ~ I D I I Y I K A S E ( ~ ~ ~ L A M B A * N N ~ N P ~ M M ~ K K ~ I R E C ~ ~ I R E C ~ *  

* R R ~ 1 8 ~ t C A P G M ~ 1 9 ~ r G M I N F ~ 2 r l 8 ~ ~ A f l l ~ r B ~ l O ~ r C ~ l l ~ ~  
* I T 3 E G ~ I T E N D ~ N P L O T ~ N S W T H ~ N P S I ~ I T E R T ~ P S I N F ~ l ~ ~ ~ B E T A ~ l l ~ ~ A L P H A I 8 ~ ~  
* D E L T A ~ l O ~ r T R H S ~ l l t l l ~ ~ T L H S ~ l l ~ r T A U 1 ( B O ~ ~ T A U 2 ~ 4 O ~ ~ T A U 3 ~ 2 0 ~  

C E Q U A T I O N   4 3  
C A L L   T A U F T ( 3 t L 3 )  
DO 63 J = l r N N  
T T = T T F C T ( K * B E T A ( J ) )  

FF=(CAPGM(K)-CAPGM(K+l)-(CAPGM(K)**2-CAPGMIK+l)**2)/ * ( 1 2 r 5 6 6 3 7 0 6 1 4 4 * T T * * 2 ) ) / 3 . 1 4 1 5 9 2 6 5 3 6  
G A M + ~ A ~ C K F C T ( l r K * B E T A ( J ) )  
C A L L  F O I N T ( J r T A U 3 r L 3 t B E T A ( J ) , T T I K I S U M I  
TLHS(J)=(FF/(ZeO+GAMKA+CA"A)x(2,0wCAMMA)*(2eO*GAMMA-GMINF(Z*K~*FAC)-LAMBA) 

I F l K K - l ) 4 C ~ 4 0 ~ 1 0  

I F ( N U - K ) 2 0 * 3 0 t 2 0  

T L H S ( J ) = T L H S ( J ) - S U M  

FAC=SQRTIleO+TPFCT(KtBETA(J))**2) 

* * T T - G M I N F ( ? r K ) * S U M  

1C 03 30 N U = l r K K  

2 0  C A L L  FOINTlOtTAU3rL3tBETA(J)tTT*NU*SUM) 

30 CONTINUE 
4 0  T L H S ( J ) = T L H S ( J ) / G ~ I N F ( 2 t K )  

TERM=FF*TT*FAC/(2rO*GAMMA*GAMMA) 
DO 50 I = l r N N  
T R H S ~ J ~ I ~ ~ T E R M * E X P ( ~ 3 r O + B E f A o ) + B E T A ( J ~ ~ * B E T A ~ ~ ~ * * C ~ I ~ + T R H S ~ J ~ I ~  

5 0  CON1 I NUE 
60 CONTINUE 

RETURN 
END 

SUBROUTINE F O I N T ( I * T A U t L L t X r R r K I S U M )  
REAL  LAMBA 
D I M E N S I O N   T A U ( 1 )  
CGMMON I M t I D t I Y , K A S E ( 5 ) * L A M B A t N N * N P t M M t K K I i R E C l ~ I R E C Z *  

* R R I 1 ~ ~ r C A P G M ~ 1 9 ~ t G M I N F f 2 ~ l ~ ~ r A ~ l l ~ r B ( 1 0 ~ ~ C ~ l l ~ t  
* I T B E G ~ I T E N D ~ N P L O T ~ N S ~ ~ T H I N P S I ~ I T E R T ~ P S I N F ~ ~ ~ ~ ~ B E T A ~ ~ ~ ~ ~ A L P H A ~ ~ ~ D  
~ D E L T A ~ 1 C ~ ~ T R H S ~ l l t l l ~ ~ T L H S ~ l l ~ ~ T A U l ~ 8 0 ~ ~ T A U ~ ~ ~ O ~ t T A U 3 ~ 2 0 ~  

C INTEGRATION  FOR  EQUATIONS 41  AND 4 3  
F A C O ( K ~ X O ) = S Q R T ~ ~ B ~ + T P F C T ( K ~ X O ~ * * ~ )  

* (FTl+FT2+FT3+FT4+FT5+FT61 
F C N C O I T A U O t F T l t F T 2 r F T 3 ~ F T 4 t F T 5 t F T 6 ~ ~ S Q R T f l ~ O ~ T A U O * T A U O ~ *  

F U N C 1 ( F O ~ X C ~ C O ) + F O * E X P ~ ~ 3 r O * X O ~ * X O * * € O  
I F ( I ) 3 2 * 3 O t : O  

T R H S ( I t J ) = O e O  
10 DO 2 0  J=1,NN 

2 3  C O N T I N U E  
3 0  SUM=OeO 

X O V R 2 = X / 2 r O  
DO 70 L = l r L L  
T A U L - T A U ( L )  
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S 3 = 2 o 5 + l l r O + T A U L )  
S 6 = 2 0 5 + ( 1 o 0 - T A U L )  
X l = X O V R 2 + ( 1 o O + T A U L )  
X2=XOVR2* (3mO+TAULI  
X3=2rO+X+S3+S3+S3 
X 4 a X O V R 2 * ( l o O - T A U L )  
X 5 = X O V R 2 + ( 3 o O ~ T A U L )  
X6=200*X+S6*Sb+S6 
T l = T T F C T ( K v X l )  
T Z = T T F C T ( K s X 2 )  
T 3 = T T F C T f K , X 3 )  
T 4 t T T F C T  f K 9x4 1 
T S - T T F C T ( K t X 5 )  
T 6 = T T F C T ( K , X 6 )  
F l = X O V R 2 * G T F C T ( X l t T l r X t R )  
F2=XOVR2+GTFCT(X2mT2eXrR) 

F4nXOVR2+GTFCT(X4rT4#X*R) 
F ~ = X O V R ~ + G T F C T ( X ~ ~ T ~ ~ X B R )  

I F ( 1 ) 4 0 r 4 0 r 5 0  
40 F l = F l * G M F C T ( l r K * X l )  

F Z = F 2 + G M F C T ( l r K e X 2 )  
F 3 = F 3 + G M F C T ( l r K r X 3 )  
F 4 = F 4 + G M F C T ( l t K a X 4 1  
F 5 = F S * G M F C T ( l r K r X 5 )  
F 6 = F 6 * G M F C T ( l r K r X 6 )  
S U M = S U M + F U N C O ( T A U L ~ F ~ ~ F ~ ~ F ~ B F ~ ~ F ~ ~ F ~ )  
GO TO 70 

50 F l = F l + F A C O ( K r X l )  
F Z = F Z * F A C O ( K r X 2 )  
F 3 = F 3 * F A C O ( K r X 3 )  
F 4 = F 4 * F A C O ( K r X 4 )  
F 5 = F 5 + F A C O ( K r X 5 )  
F 6 = F 6 * F A C O ( K r X 6 )  
S U M = S U M + F U N C O ( T A U L I F ~ ~ F ~ ~ F ~ ~ F ~ ~ F ~ ~ F ~ )  
DO 60 J = l r N N  
T l = F U N C l ( F l , X l r C ( J ) I  
T 2 = F U N C l ( F Z t X Z s C ( J ) )  
T 3 = F U N C l ( F 3 r X 3 r C ( J ) )  
T 4 = F U N C l ( F 4 r X 4 r C ( J ) )  
T S = F U N C l ( F S r X S , C ( J ) )  
T 6 = F U N C l ( F 6 r X 6 r C ( J ) I  
T R H S ( I ~ J ) = T R H S ( I I J ) + F U N C O ( T A U L ~ T ~ ~ T ~ ~ T ~ ~ T ~ ~ T ~ ~ T ~ )  

F ~ ~ ~ o ~ * S ~ + S ~ * G T F C T ( X ~ ~ T ~ ~ X I R )  

F ~ = ~ O ~ + S ~ * S ~ + G T F C T ( X ~ ~ T ~ ~ X I R )  

60 C O N T I N U E  
70 C O N T I N U E  

S U M n S U M + l r 5 7 0 7 9 6 3 2 6 8 / L L  
I F ( I ~ 1 0 0 t 1 0 0 ~ 8 0  

T R H S ~ I n J ~ ~ T R H S ~ I ~ J ~ + l o S ? O 7 9 6 3 2 6 8 / L L  
80 DO 90 J = l , N N  

90 CONTINUE 
100 RETURN 

END 

F U N C T I O N   G T F C T ( X 1 m T t X X r T T )  

T E R M l = T T * T  
D E L = I X X - X 1 ) * + 2  
Z=(fTT=T)*+2+DEL)/12oO*TERMl) 
C A L L  QQPMH(2rQPHrQMH) 

C E Q U A T I O N  14 
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TERM2=TT*TT=f*T  
G T F C T ~ ( T T * ( D E L + T E R M 2 ) * Q P H + T * ( D E L - T E R M 2 ) * Q M H ~ /  

RETURN 
END 

* (Z5e132741t29*S0RT~TERMl*TERMl*TERM1~*2*~2+2eO~~ 

S U B R O U T I N E   G P L O T ( K )  
REAL  LAMBA 
D I M E N S I O N   X W ( l l ) r G M W ( l l )  
COMMON I M r I D r I Y e K A S E ( 5 ) r L A M B A I N N I N P I M M I K K I I R E C l r I R E C 2 r  

* R R ( 1 8 ) e C A P G M ( 1 9 ) ~ G ~ I N F ( 2 ~ 1 8 ~ ~ A ( l l ) r B ( 1 0 ~ ~ C ~ l l ~ r  
* I T B E G ~ I T E N D r N P L O T r N S ! ~ T H r N P S I r I T E R T r P S I N F ~ l 8 ~ r ~ E T A ~ l l ~ t A L P H A ~ ~ ~ ~  
* D E L T A ~ l O ~ r T R H S ( l l r l l ~ r T L H S ~ l l ~ t T A U 1 ( B O ~ r T A U 2 ~ 4 O ~ r T A U 3 ~ 2 0 ~  

C PRINT  AND  PLOT  ROUTINE FOR V O R T E X   D E N S I T Y  
X W ( 1 ) = O * O l  
DO 8 J = l r l O  
I F (   J - M " l 4 r 4 t 6  

GO T O  8 
4 X W ( J + l ) - D E L T A ( J )  

6 X W ( J + 1 ) = - 2 * 0 * * 1 2 5  

8 C O N T I N U E  
GMW(J)=-2.0+*125 

K G O = I T E R T - I T B E C + l  
KGO=KGO-~NPLOT+1)*(KGO/(NPLOT+l~) 
K G O = K - 1 + ( ( K G 0 + 2 ) * ( K G 0 + 3 1 ~ / 2  
K P E N = l  
DO 40 I = l t l O O  
X C = I / 5 O e O  
T P R I M + T P F C T ( K t X C )  
YC=GMFCT(2rKrXC)/SQRT(leO+TPRIM*TPRIM) 
IF(0*25-ABS(YC))30e2OrZO 

Y P = Y C * 2 0 * 0 + 1 0 * 5  
CALL   EPLOT I KPEN r YP r X P  ) 
KPER=2 
I F ~ I - K G O * ( I / K G 0 ) ) 4 0 e 3 3 , 4 0  

30 K P E N + l  
40 CONTINUE 

I F ( K - l ) 5 0 r 5 0 r 6 0  
5 0   W R I T E ( 3 t 3 0 0 1 ) I T E R T  
6 0  MPLUS=MM+l  

DO 80 I t 1  rMPLUS 
T P R I M = T P F C T ( K t X W 1 I ) )  
GMW(I)=GMFCT(2eKrXW(I)) /SQRT(lrO+TPRIM+TPRIM*TPRIM) 

W R I T E ~ ~ B ~ ~ ~ ~ ~ K ~ ~ G M W ( I ~ ~ I = ~ ~ ~ O ~ ~ G M I N F ~ ~ ~ K ~ ~ ~ A ~ J ~ ~ J = ~ ~ N N ~  
I F ( K K ~ K ) l 0 0 r 1 0 0 r 9 0  

20 X P = l O = X C * 5 * 0  

80  CONTINUE 

9C W R I T E ( 3 r 3 0 0 3 )  
103 RETURN 

3 0 0 1   F O R M A T ( 1 1 H   I T E R A T I O N  112/2H ' / 2 H  ' 1  
3002  F O R M A T ( 1 Z H  ' GAMMA S U E ~ I 2 ~ l X ~ l l F 9 a 5 / 2 H  ' / l l H  ' A C O E F F S r 9 X r 5 E 1 8 . 1 0  

* / ( 2 H  ' r 1 8 X r 5 E 1 8 e 1 0 ) )  
3003 F O R M A T ( Z H   ' / 2 H  I )  

END 

S U B R O U T I N E   I N I T L  
REAL  LAMBA 
COMMON I M ~ I D I I Y ~ K A S E ( S ) ~ L A M B A ~ N N ~ N P ~ M M ~ K K ~ I R E C ~ ~ I R E C ~ ~  

* R R ( 1 8 ~ ~ C A P G M ( 1 9 ~ r G M I N F ( 2 e l 8 ~ e A ~ l l ) r B ~ l O ~ r C ( l l ~ r  
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I- 

+ I T B E G r I T E N D r N P L O T r N S W T H r N P S I r I T E R T r P S I N F ( l E ) r ~ E T A ( l l ) r A L P H A ~ E ) r  
* D E L T A ~ l O ~ r T R H S ~ l l t l l ~ ~ T L H S ~ l l ~ ~ T A U l ~ 8 0 ~ r T A U 2 l 4 O ~ r T A U 3 ~ 2 0 ~  
READ(2r2001)IMrIDtIY 
WRITE(3t3001)IMtIDrIY 
R E A D ( 2 t 2 0 0 2 ) ~ K A S E ( I ~ ~ I ~ l t 5 ) , L A M B A , N N r N P r M M r K K r I T B E G r I T E N D r N P L O T r  

W R I T E ~ 3 r 3 0 0 2 ~ ~ K A S E ~ I ~ ~ I ~ l r 5 ~ ~ L A M B A r N N r N P r M M r K K r I T B E G r I T E N D r N P L O T ~  

KLESlZKK-1 
NPSI=2*KK+1 
IF(NPLOT)lOtlOr20 

* NSWTH 

* NSWTH 

10 NPLOTnl 
20 R E A D / 2 t 2 0 0 3 ) ( R R ( K ) r K r l , K K )  

W R I T E ( 3 t 3 0 0 3 ) ( R R I K ) t K n l , K K )  
R E A D ( 2 , 2 0 0 3 ) ( C A P G M ( K ) t K = l r K K )  
WRITE(3t3004)(CAPGM(K)rK=lrKK) 
CAPGM(KK+l)=OeO 
READ12r2003)LBETA(J)rJmlrNN) 
W R I T E ( 3 t 3 0 0 5 ) ( B E T A ( J ) r J = l r N N )  
IF(KLES1140r40r30 

30 R E A D ( 2 s 2 0 0 3 ) ( A L P H A ( J ) r J = l r N P )  
WRITE(3t3006)(ALPHA('J)rJ=lrNP) 

40 READ(2t2003)(DELTA(J)tJ=lrMM) 
WRITE(3t3007)(DELTA(J)rJ=lrMM) 
READ(2,2003)(C(J)rJ=lrNN) 
W R I T E ( 3 r 3 0 0 E ) ( C ( J ) r J r l , N N I  
IF( ITBEG)130r100~50 

READ(2r2004)(B(J)tJ+lrMM) 
WRITE(l'K)(RIJ)rJflrMM) 

IF(KLESl)140~90r70 

READ(Zt2004)(A(JIrJ+lrNP) 
WRITE(2'K)(A(J)rJ=ltNP) 
K2=18+K 
WRITEL2*K2)(A(J)rJ=lrNP) 

50 DO 60 K - ~ B K K  

60 CONTINUE 

70 DO 80 KtlrKLESl 

80 CONTINUE 
90 READ(2r2004)(A(J)tJ=ltNN) 

W R I T E ( Z ' K K ) ( A ( J ) I J = ~ ~ ~ N )  
K2 = 1 E+KK 
WRITE(2'K2)1A(J)rJ=lrNN) 
GO TO  140 

100 DO 110  J=lrlO 
81 J)=OaO 

110  CONTINUE 
DO  115  Jslrll 
A(J)mOaO 

115  CONTINUE 
DO 120  KolrKK 
WRIfE(l'K)IBIJ)rJ+lrlO) 
WRITE(21K)(A(J)rJmltll) 
K2=18+K 
WRITE(2'K2)1A(J)rJ=lrll) 

ITBEGtl 
GO TO 140 

130  ITBEG=-ITBEG+l 
140 DO 160  J=lrMM 

DO 150 NU=leMM 
T R H S ( J n N U ) = F F C T ( N U r D E L T A ( J ~ )  

120  CONTINUE 
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1 5 0   C O N T I N U E  
1 6 0   C O N T I N U E  

WRITE(3111((TRHS(JtNU)tNU=ltMM1#J=ltMM) 
I F ( K L E S 1   J 2 0 0 r 2 0 0 r 1 7 0  

DO 1 8 0   N U = l r N P  
TRHS(JtNU)=EXP(-NU+ALPHA(J))  

1 7 0  DO 1 9 0   J = l t N P  

1 8 0   C O N T I N U E  
1 9 0   C O N T I N U E  

200 RETURN 
WRITE(4'1)((TRHS(JtNU)tNU=l~NP1tJ=l#NP1 

2 0 0 1   F O R M A T ( 3 1 5 )  
2 0 0 2   F O R M A T ( 5 A 2 t F 1 0 1 O s 8 1 5 1  
2 0 0 3   F O R M A T ( 9 F 1 0 . 0 1  
2 0 0 4   F O R M A T ( 4 E 2 0 r l l )  
3 0 0 1   F O R M A T ( l H l / / / / #   P R I N T O U T   O F   I N P U T  FOR M A I N  C O O E * / / / l X t 3 2 5 / / )  
3002 FORMAT(lXt5A2/1OX#7HLAMBA = s F 1 0 . 4 / 1 0 X t 4 H N N   = t I 3 / 1 0 X t 4 H N P   = * 1 3 / 1 O X #  

*4HMM = t I 3 / 1 0 X t 4 H K K   = t I 3 / 1 0 X t ? H I T B E G   = r I 3 / 1 0 X t 7 H I T E N D   = r 1 3 / 1 0 X t  
* 7 H N P L O T   = t I 3 / 1 0 X t 7 H N S W T H  = t I 3 / / )  

3 0 0 3   F O R M A T ( / / B H  RR * t l 3 F 1 0 . 5 / 8 X t B F 1 O ~ 5 )  
3004 F O R M A T f / / B H  CAPGM = t l O F 1 0 . 5 / 8 X t B F 1 0 ~ 5 1  
3 0 0 5   F O R M A T ( / / B H  BETA = t l l F 1 0 . 5 1  
3 C 3 6   F O R K A T ( / / B H  ALPk!A = t B F l O a 5 1  
3C07 F O R M A T ( / / B H  DELTA ~ ~ 1 9 F 1 0 0 5 1  
3C08  F O R M A T ( / / $ H  C = t l l F 1 0 . 5 )  

END 

SUBROUTINE  BPLOT 
REAL  LAMBA 
COMMON I M t I D t I Y t K A S E ( 5 ) t L A M B A t N N t N P t M M t K K I I R E C l t I R E C 2 t  

* R R ~ 1 B ~ t C A P B M ~ 1 9 l r G M I N f ~ Z t l 8 ~ t A ~ l l ~ t B ~ l O ~ t C ~ l l ~ ~  
* I T B E G ~ f T E N D t N P L O T t N S W T ~ t N ~ S I ~ I T E R T t P S I ~ F ~ l B ~ s B E T A ~ l l ~ ~ A L P H A ~ B ~ ~  
* D E L T A ~ l O ~ t T R H S ~ l l ~ l l ) t T L H S ( l l ~ ~ T A U l ~ 8 O ~ t T A U 2 ~ 4 O ~ ~ T A U 3 ~ 2 0 ~  

b ! R I T E ~ 3 t 3 C O l ) I M t I D t I Y , I K A S E ~ I ) ~ I ~ l t 5 ) ~ I T E R T  
I F ( I T E R T - I T B E E ) l O t 5 0 s 2 0  

GO TO 40 

IF(JPLCT-NPLOT+(JfLOT/NPLOT))50t3Ot50 

10 C A L L   S C A L E ~ l o O t 1 ~ O ~ O ~ O t 1 1 . 0 )  

20 J P L O T = I T E R T - I T B E G + l  

30 C A L L   E P L O T l l t 1 6 e 5 t O o O )  
C A L L   S C A L E ( l . O t l . C t O e O t l r 0 )  

4 0  CALL E P L O T l l t 0 ~ 0 t O e 0 )  
C A L L  SCALE(1.0tloOtOoOt~O038~ 
C A L L   E G P I D ( l ~ O . O t O . 0 ~ 2 ~ 5 r 4 )  
C A L L   E C R I D ~ O t 0 0 0 t 1 3 r O t l ~ 0 t 5 1  
C A L L  E G R I D ( 0 t 5 ~ 5 t l O ~ O t l e 0 t l O )  
CALL E G R I D ( 3 t 1 0 0 5 t 1 3 r O t 2 . 5 t 4 1  

50 RETURN 

END 
3 0 0 1  F O R M A T 1 1 H l ~ 1 2 t l H / r 1 2 ~ l H / t 1 2 ~ 5 X ~ 5 A 2 ~ 5 X ~ 1 1 T E R A T I O N  N U M B E R 1 s 1 3 / / )  

F U N C T I O N   T T F C T ( K t X 1  
REAL  LAWBA 
COMMON I M t I D t I Y t K A S E ( 5 l r L A M B A ~ N ~ t ~ f t M M t K K t I R E C l t I R E C Z t  

+ R R I 1 8 ) t C A P G M ( 1 9 ) t G M I N F ~ 2 t l 8 ) ~ A ~ l l ) ~ B ~ l O ~ t C ~ l l ~ t  
* I T B E G t I T E N D t N P L O T t N S W T H , N P S I t I T E R T t P S I N F ~ l ~ ~ t B E T A ~ l l ~ t A L P H A ~ B ~ t  
* C E L T A ~ 1 O ~ ~ T R H S ~ 1 1 ~ 1 l ~ ~ T L H S ~ l l ~ n T A U l ~ 8 O ~ t T A U 2 ~ 4 O ~ t T A U 3 ~ 2 0 ~  

C E 3 U A T I O N  3 0  
I F ~ K - I R E C l + l ) l O t 2 O t l O  
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I 

10 C A L L   G E T C F ( 1 r K r B r M M I  
20 Z = E X P ( - X )  

BB=B  (MM 1 
T T F C T = B ( l )  
DO 3 0  J n 2 r M M  
T T F C T + T T F C T + B ( J )  
NU=MM-J+1 
B B = B ( N U ) + Z + B B  

30 C O N T I N U E  
TTFCT=RR(K) -TTFCT+Z+BB 
RETURN 
END 

F U N C T I O N   T P F C T ( K , X )  
REAL  LAMBA 
COMMON I M r I D r I Y r K A S E ( S ) r L A M B A r N N r N P r M M r K K I l R E C l r I R E C 2 r  

* R R ~ 1 ~ ~ r C A P G M ~ 1 9 ~ r G M I N F ~ 2 ~ l ~ ~ r A ~ l l ~ r B ~ l O l r C ~ l l ~ ~  
* I T B E G ~ I T E N D ~ N P L O T r N S W T H r N P S I ~ I T E R T r P S I N F ~ l 6 ~ r B E T A ~ l l ~ r A L P H A ~ 6 ~ r  
* b E L T A ~ l O ~ r T R H S ~ l l r l l ~ r T L H S l l l ~ ~ T A U l ~ 6 O ~ r T A U 2 ~ 4 O ~ ~ T A U 3 ~ 2 0 ~  

I F ( K ~ I R E C 1 + 1 ~ l O r Z O r l O  
C F I R S T   D E R I V A T I V E   W I T H   R E S P E C T   T O  X OF  EQUATION 30 

10 C A L L   C E T C F ( 1 r K t B t M M )  
2 0   Z = E X P ( - X )  

CC=MM*BIMM) 
DO 30  J + 2 r M M  
NU=MM-J+1 
CC=NU+B(NU)+Z+CC 

TPFCTr-Z*CC 
RETURN 
END 

30 C O N T I N U E  

FUNCT I ON F F C T  ( J r X  ) 
C E Q U A T I O N  32 

F F C T = E X P ( O J * X ) - l . O  
RETURN 
END 

F U N C T I O N   G M F C T ( N E W L D r K t X )  
REAL  LAMBA 
COMMON I M r I D t I Y r K A S E ( 5 ) r L A M B A r N N p N P r M M , K K t I R E C l r I R E C 2 r  

~ R R ~ 1 8 ~ r C A P C M ~ 1 9 ~ r G M I N F ~ 2 r l 8 l r A ~ l l ~ r B ( 1 0 ~ r C ~ l l ~ ~  
* I T B E G r I T E N D ~ N P L O T ~ N S W T H ~ N P S I r I T E R T r P S I N F ~ l 6 ~ r B E T A ~ l l ~ ~ A L P H A ~ 6 ~ ~  
* D E L T A ~ l O l r T R H S ~ l l r l l ~ t T L H S ~ l l ~ ~ T A U l ~ 8 O ~ r T A U 2 ~ 4 O ~ ~ T A U 3 ~ 2 0 1  

C EQUATIONS 3 1  AND 33 
FACrSQRT(lrO+TPFCT(K~X)+*21 
K 2 = 1 8 * ( N E W L D = l I + K  
I F ( K K - K ) l O ~ l O r S O  

10 I F ( K 2 - I R E C 2 + 1 ) 2 0 r 3 0 r 2 0  
20 C A L L   G E T C F ( 2 r K 2 r A t N N )  
30 GMFCT=BeO 

DO 40 J I l r N N  
GMFCT=GMFCT+A(J)*X**C(Jl 

40 C O N T I N U E  
G M F C T ~ G M I N F ( N E W L D ~ K ) * ~ l r O + E X P ~ ~ 3 r O ~ X l * G M F C T ~ * F A C  
RETURN 

5 0  I F ( K 2 - I R E C 2 + 1 1 6 0 r 7 0 r 6 0  
60 C A L L   C E T C F ( 2 r K 2 r A 9 N P )  



70 Z - E X P ( - X )  
EE=A ( NP 1 
DO 80 J = 2 s N P  
N U = N P - J + l  
E E = A ( N U ) + Z * E E  

80 C O N T I N U E  
GMFCT~GMINF(NEWLDtK)*(loO+Z*EE~*FAC 
RETURN 
END 

SUBROUTINE  GAMIN 
REAL  LAMBA 
COMMON Z M ~ I D ~ I Y I K A S E I ~ ) ~ L A M B A ~ N N I N P ~ M M ~ K K ~ I R E C ~ ~ I R E C ~ ~  

+ R R ( ~ ~ ~ ~ C A P G M ~ ~ ~ ) ~ G M I N F ( ~ , ~ B ) ~ A ( ~ ~ ) I B ~ ~ O ~ I C ~ ~ ~ ~ ~  
* I T B E G I I T E N D ~ N P L O T ~ N S W T H ~ N P S I , I T E R T ~ P S I N F ( ~ ~ J I B E T A ~ ~ ~ ~ ~ A L P H A ~ ~ ~ I  
+ D E L T A ~ l O ) r T R H S ~ 1 1 s 1 l ) t T L H S ~ l l ~ ~ T A U l ~ B O ~ t T A U 2 ~ 4 O ~ ~ T A U 3 ~ 2 0 ~  

C EQUATION 2 9  
SUM=O r 0 
DO 10 I = l t K K  
NU=KK- I +1 
T K S Q R = T T F C T I N U I ~ O O O ~ O ) * * ~  
FF=(CAPGM(NU)-CAPGM(NU+l)-(CAPGM(NU)*+2=CAPGM(NU+l)**2J/ 

G M I N F ( l s N U ) = G M I N F ( 2 s N U I  
GMINF(ZsNU)~-(LAMBA+SUM)+SQRT(ILAMBA+SUM)**2+FF~ 
SUM=SUM+GMINF ( 2  ( N U )  

1 0   C O N T I N U E  
RETURN 
END 

* (12e5663C8+TKSQR))/301415927 

SUBROUTINE QQPMHIZ~QPHIQMHI 

Y=Z/(Z+2rO) 
Y L O G = A L O G ( Y )  
S Q R O T = S Q R T ( Z + 2 o O )  
A ~ 0 ~ 0 3 7 4 2 5 6 3 7 1 3 + 0 ~ 0 1 4 5 1 1 9 6 2 1 2 * Y  
A = O 0 0 3 5 9 0 0 9 2 3 8 3 + A * Y  
A = O o 0 9 6 6 6 3 4 4 2 5 9 + A * Y  
A = l r 3 8 6 2 9 4 3 6 1 1 2 + A * Y  
8 ~ 0 ~ 0 3 3 2 8 3 5 5 3 4 6 + 0 ~ 0 0 4 4 1 7 8 7 ~ 1 2 * Y  
B = O m 0 6 8 8 9 2 4 8 5 7 6 + B + Y  
R = O e 1 2 4 9 8 5 9 3 5 9 7 + B * Y  
BOO 0 5+B*Y 
C = 0 0 0 4 7 5 7 3 6 3 5 4 6 + 0 0 0 1 7 3 6 5 0 6 4 5 1 * Y  
C=O.O626060122O+C*Y 
C = O r 4 4 3 2 5 1 4 1 4 6 3 + C * Y  
C=l *O+C*Y 
D=Or34069697526+0000526449639*Y 
D ~ O r 0 9 2 0 0 1 8 0 0 3 7 + D * Y  
0 = 0 0 2 4 9 9 8 3 6 8 3 1 O + D + Y  

QMH=lr414213562373/SQROf+(A-B+YLOC) 
O P H ~ ~ Z + l r O ) * Q M H - 1 o 4 1 4 2 1 3 5 6 2 3 7 3 * S Q R O T r ( C - D * Y L O G )  
RETURN 
END 

C LEGENORE  FUNCTIONS  AS  DESCRIBED I N   A P P E N D I X  A 0 2  

D=D*Y 
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SUBROUTINE  ESOLV(ArBrS0LUTrN) 
DIMENSION A ~ l l r l l ) r B ~ 1 l ~ r S O L U T ~ l l . ~ I P I V ~ l l ~ ~ I N D E X ~ l l r 2 ~ r P I V O T ~ l l ~  

DETER-1 B O  
DO 10 I-ltN 
IPIVf 11-0 

10  CONTINUE 
DO  200  ItlrN 
AMAX-0 0 
DO 60 J=lrN 
IF(IPIVLJ)-1)2Or60r20 

20  DO 50 K=lrFI 
IF(IPIV~~)-1)3Or50r210 

30 I F ( A B S ( ~ . I A X ) - A B S ( A ( J ~ ~ ) ) ) 4 0 r 5 O r 5 0  
40 IROW-J 

I COL-K 
AMAX=A(JrK) 

50 CONTINUE 
60 CONTINUE 

C SOLUTION  OF  EQUATIONS IN MATRIX  FORM 

IPIv~IcoL)=IPIv~IcoL)+1 
I F ~ I R O W ~ I C O L ) 7 0 r 1 1 0 ~ 7 0  

DO 80 L=lrN 
SWAP-A ( I ROW rL 1 
A(IROWtL)=A(ICOLrL) 
A(ICOLrL)=SWAP 

SWAP=B(IROW) 
B(IROW)-B(ICOL) 
B(ICOL)=SWAP 

110  INDEX(Itl)=IROW 
INDEX(IrZ)=ICOL 
PIVOT(I)=A(ICOLsICOL) 
DETER=DETER+PIVOT(I) 
A(ICOLIICOL)=~BO 
DO 120  LtlrN 
A(ICOLrL)~A(ICOLrL)/PIVOT(I) 

B(ICOL)mB(ICOL1/PIVOT(I) 
DO 200 Ll = l r N  
IF(Ll~ICOL~160r200r160 

70  DETER=-DETER 

80 CONTINUE 

120 CONTINUE 

160 T=A(LlrICOL) 
A(LlrICOL)=O.O 
DO 170  LSlrN 
AfLlrL)~A(LltL)-A(ICOLrL)+T 

B(Ll)PB(Ll)-B(ICOL)+T 
170 CONTINUE 

200  CONTINUE 
210  CONTINUE 

DO 220 IrlrN 
SOLUT(I)-B(I1 

220  CONTINUE 
RETURN 
END 

SUBROUTINE  TAUFT(KG0rLLI 
REAL  LAMBA 
COMMON I M ~ I D ~ I Y ~ K A S E ( ~ ) ~ L A M B A , N N I N P , M M ~ K K B I R E C ~ ~ I R E C Z ~  

+ R R ~ l 8 ~ r C A P G M ~ 1 9 ~ r G M I N F ~ Z ~ l 8 J r A ~ l l ~ ~ B ~ l O ~ r C ~ l l ~ r  
+ I T B E C r I T E N D r N P L O T ~ N S W T H ~ N P S I r I T E R T r P S I N F ~ l 6 ~ r ~ E T ~ ~ l l ~ r A L P H A ~ ~ ~ r  
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* D E L T A ~ l O ~ ~ T R H S ~ l l r l l ~ e T L H S ~ l l ~ ~ T A U l ~ 8 0 ~ ~ T A U 2 ~ 4 O ~ ~ T A U 3 ~ 2 0 ~  
C TAUS TO BE USED IN  GAUSS-CHEGYSHEV AS DESCRIBED IN APPENDIX A 0 3  

IF~ITERT-NSWTHt10t20~20 

GO TO 30 
10 LL=lO 

20 LL=lO*2**(4-KGO) 
30 DO 70 LrlrLL 

T A U = C O S ~ 3 ~ 1 4 1 5 9 2 6 5 3 6 + ( 2 . O + L - l 0 0 ~ / ~ 4 0 0 * L L ~ ~  
GO TO ( 4 0 e 5 0 r b O ) r  KG0 

40  TAUl(L)=TAU 
GO TO 70 

50 TAUZ(L)=TAU 
GO  TO 70 

60 TAU3(L)=TAU 
70 CONTINUE 

RETURN 
END 

SURROUTINE GETCF(NF1LEeNRECDeVECTReNUMBR) 
DIMENSION  VECTR(1) 

READ(NFILE'NRECD)(VECTR(I)eI=leNUMBR) 
RETURN 
END 

C RETRIEVE  CORRECT  SET  OF A OR B COEFFICIENTS 

SURROUTINE  PUTCF 
REAL  LAMBA 
COMMON I M e I D e f Y e K A S E ( 5 l r L A M B A e N P 4 * N P e M M e K K ~ I R E C l * I R E C 2 e  

* R R ( 1 8 ~ ~ C A P G M ~ 1 9 ~ e G M I N F ~ Z ~ l 8 ~ t A L l l ~ ~ B ~ l O ~ e C ~ l l ~ e  
* I T R E G ~ I T E N D ~ N P L O T r N S W T H ~ N P S I e I T E R T e P S I N F ~ l 8 ~ e B E T A ~ l l ~ e A L P H A ~ 8 ~ e  
* D E L T A ~ l O ~ e T R H S ~ 1 1 e 1 l ~ ~ T L H S ~ l l ~ ~ T A U l ~ 8 O ~ ~ T A U 2 ~ 4 O ~ ~ T A ~ 3 ~ 2 0 ~  

C STORE A G B COEFFICIENTS  TO  RE  PUNCHED AND USED AS INPUT 
DO 40 KrleKK 
IREC~18*(ITERT-l)+K 
CALL  GETCF(ltKeR*PM) 
WRITE(6'IREC)(B(J),J=leMM) 

10  IF(KK-K120rZOr30 
20 CALL  GEfCF(2rKeA*NN) 

W R I T E ( 7 ' I R E C ) ( A ( J ) r J = l ~ N N )  
GO TO 40 

WRITE(7'IREC)(A(J)tJ=leNP) 

RETURN 
END 

30 CALL  GETCF(2rKeAeNP) 

40 CONTINUE 
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C S T R E A M T U B E   C O D E  
C 
C P S N E T  
C 
C A L L   I N P U T   F O R   T H E   S T R E A M L I N E   C O D E  I S  DONE I N  S U B R O U T I N E   I N P U T *  
C I N P U T   V A R I A B L E S   A R E   A S   F O L L O W S  - 
C 
C V A R I A B L E   N A M E  c """"""_ 
C I M  
C I D  
C I Y  
C K A S E  
C LAMBA 
C NN 
C 
C N P  
C 
C MM 
C KK 
C 
C N P F  
C N X 1  
C N R 1  
C N X 2  
C NR2 
C RR 
C CAPGM 
C  B 
C  A 
C  C 
C 
C XF 
C R F  
C x 1  
C x 2  
C R 1  
C  C 
C 

D E S C R I P T I O N  

TWO D I G I T  MONTH  OF  THE  YEAR 
TWO D I G I T   D A Y   O F   T H E   M O N T H  
TWO D I G I T  YEAR 
T E N   C H A R A C T E R   C A S E   I D E N T I F I C A T I O N  
ADVANCE R A T I O  
NUMBER  OF  TERMS I N  VORTEX  DENSITY  FUNCTION  FOR  OUTER 

NUMBER OF TERMS I N  VORTEX  DENSITY  FUNCTION  FOR  INNER 

NUMBER OF TERMS IN STREAM  FUNCTION 
NUMBER,OF  STEPS I N  T H E   P I E C E W I S E   C O N S T A N T   C I R C U L A T I O N  

D I S T R I B U T I O N  
NUMBER  OF F I E L D   P O I N T S  
NUMBER  OF A X I A L   M E S H   P O I N T S  IN R E G I O N  1 
NUMBER OF R A D I A L   M E S H   P O I N T S   I N   R E G I O N  1 
NUMBER  OF A X I A L  MESH  POINTS I N  R E G I O N  2 
NUMBER  OF R A D I A L   M E S H   P O I N T S   I N   R E G I O N  2 
R A D I A L   L O C A T I O N S   O F   S T E P S   I N   C I R C U L A T I O N   D I S T R I B U T I O N  
P I E C E W I S E   C O N S T A N T   C I R C U L A T I O N   D I S T R I B U T I O N  
COEFFIC IENTS  IN   REPRESENTATION  OF  VORTEX  TUBE  SHAPE 
C O E F F I C I E N T S   I N   R E P R E S E I I T A T I O N  OF  VORTEX  DENSITY 
EXPONENTS I N   M A T C H I N G   F U N C T I O N  FOR  VORTEX  DENSITY  ON 

A X I A L   P O S I T I O N S   O F   F I E L D   P O I N T S  
R A D I A L   P O S I T I O N S   O F   F I E L D   P O I N T S  
A X I A L   P O S I T I O N S  OF  MESH  POINTS I N  REGION 1 
A X I A L   P O S I T I O N S  OF M E S H   P O I N T S   I N   R E G I O N  2 
R A D I A L   P O S I T I O N S   O F   M E S H   P O I N T S   I N   R E G I O N  1 
UPPER  BOUND  FOR R A D I A L   M E S H   P O I N T S   I N   R E G I O N  2 

-""""""_"""-~""""""""""""""""""" 

VORTEX  TUBE 

VORTEX  TUBES 

OUTER  VORTEX  TUBE 

- C NOTES  ON  INPUT 
C 1 I F   K K = l r  N P   N E E D   N O T   B E   S P E C I F I E D  
r c 

REAL  LAMBA 
COHMON IMrIDrIYrKASE(S)rLAMBA~NNrNPrMMrKKrIREClrIREC2r 

* R R ~ 1 6 ) r C A P G M ( 1 9 ) r G M I N F ( 2 t l 6 ~ r A ( l l ~ r B ~ l O ~ r C ~ l l ~ r  
* ~ P F r N X l r N R l r N X 2 r N R 2 ~ X F ( 2 5 ) t ~ F ~ 2 5 ~ r X l ~ 2 O ~ r R l ~ 2 5 ~ ~ X 2 ~ 2 7 ~ r R 2 ~ 2 O ~ ~  
*PSI(25)rTAU1(6OltTAU2~401 

D E F I N E   F I L E   l ( 1 8 r 3 2 t U r I R E C l ) r   2 ( 3 6 t 3 3 r U r I R E C Z l r   3 1 1 0 0 * 7 5 r U r I R E C 3 )  
C A L L   I N P U T ( C C )  
C A L L   G A P I N  
I R E C p l  
W R I T E ( 3 r 3 0 0 1 )  
DO 5 I = l r N P F  
I F ( A B S ( X F ( I ) ) - O . O 5 ) 2 , 3 t 3  

2 C A L L  P I N T G ( T A U l r 8 0 ~ X F ( I ~ ~ R F ~ I ~ r l r K K r P S I r L A M B A ~  

3 C A L L  P I N T G ( T A U 2 r 4 0 r X F ~ I ) r R F ( I ) r l r K ~ r P S I r L A M B A )  
4 C A L L  O U T P T ( I R E C r X F ( I ) r R F ( I ) r l r P S I )  
5 C O N T I N U E  

G3 TO 4 

W R I T E ( 3 r 3 0 0 2 1  
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.I. . 

DO 10 I = l r N X l  
IF(ABS(Xl(I))-OoO5)6t7t7 

6 C A L L  P f N T G ( T A U 1 t 8 0 ~ X 1 ( I ) ~ R l t N R l ~ K K t P S I t L A M R A )  

7 C A L L  PINTG(TAU2t40tXl(I)rRltNRltKK~PSItLAMBA) 
8 C A L L  OUTPT(IRECtX1(I~tRltNRl~PSIl 

GO TO 8 

10 CONTINUE 
W R I T E ( 3 t 3 0 0 3 )  
DO 30 I = l t N X 2  
T T = T T F C T ( K K t X 2  ( I ) ) 
DO 20 J n l r N R 2  
R 2 ( J ) ~ T T + ( C C - T T ~ * ( J ~ l o O ) / ( N R 2 - 1 . 0 )  

2 0  CONT I NUE 

14 C A L L  PINTC(TAUlt80tX2(f)rR2tNR2tKKtPSItLAM6A) 

16 C A L L  P I N T G ( T A U 2 t 4 0 r X 2 ( I ) r R Z t N R 2 t K K ~ P S I t L A ~ B A )  
18 C A L L  O U T P T I I R E C ~ X ~ ( I ) D R ~ ~ N R ~ ~ P S I )  
30 CONTINUE 

IF(ABS(X2(I))~Oo05)14tl6tl6 

GO TO 1 8  

W R I T E ( 3 t 3 0 0 4 )  
DO 40 I = l  t N P F  
R E A D ( 3 ' I ) P S I ( I )  
W R I T E ( 3 t 3 0 0 5 ) P S I ( I )  
I R E C = N P F  
C A L L  R E G N l ( I R E C t N X l t N R l r X l t R l t P S I ( I ) )  
C A L L  R E G N ~ ( I R E C W N X ~ ~ N R Z ~ X ~ ~ R ~ ~ P S I ( I ) ~ K K ~ C C )  

C A L L   E X I T  
40 CONTINUE 

3 0 0 1   F O R M A T ( ' 1 F I E L D   P O I N T S ' / )  
3 0 0 2   F O R M A T ( / / / /  ' I  REGION 1 P O I N T S ' / )  
3 0 0 3   F O R M A T I / / / / / '   R E G I O N  2 P O I N T S ' / )  
3 0 0 4   F O R M A T ( l H 1 )  
3 0 0 5   F O R M A T I / / / / '   P S I = ' t E 1 7 0 1 0 t '  IS A T ' )  

END 

S U B R O U T I N E   I N P U T ( C C )  
REAL L A M R A  
COMMON IMtIDrIYtKASE(5)tLAMRAtNNtNPtMMtKKtIRECltIREC2t 

* R R ( 1 B ) t C A P G M 1 1 9 ) ~ G M : N F ( 2 t l 8 ~ t A ( l l ) ~ B ~ l O ) t C ~ l l ~ ~  
* N P F t N X l t N R l r N X 2 t ~ R 2 t X F ( 2 5 ) r R F ( 2 5 ) t X l ( ~ O ) t ~ ~ ( ~ 5 ~ r X 2 ( 2 7 ) t R 2 ( 2 O l t  
*PSI(25)~TAUl(BO)tTAU2(40) 

R E A D ( 2 r 2 0 0 1 ) I M t I D t I Y  
W R I T E ( 3 t 3 0 0 1 ) I M t I D t I Y  
R E A D ( 2 r 2 0 0 2 ) ( K A S E ( I ! ~ I = l t 5 ) ~ L A M B A t ~ ~ t N P t ~ M t ~ K r N P F r N X l t N R l t ~ X Z t ~ R 2  
W R I T E ~ 3 ~ 3 0 0 2 ~ ~ K A S E ~ I ~ t I ~ l t 5 ~ t L , ~ ~ l ~ A t N ~ t N P t ~ M t K K t N P F t ~ X l r ~ R l t ~ X 2 t ~ R 2  
READ(2,2003)(RR(K),K=ltKK) 
W R I T E 1 3 r 3 0 0 3 ) ( R R ( K ) t ~ = l t ~ K )  
READ(2,2003)(CAPGM(K)tK=ltKK) 
WRITE(3r3004)ICAPGM(K)tK=ltKK) 
C A P G M ( K K + l ) = O o O  
W R I T E ( 3 t 3 0 0 5 )  
DO 10 K = l t K K  
READ(2r2004)(B(J)tJtltMM) 
WRITE(3t3006)(A(J)tJ=lt~M) 
W R I T E ( l ' K ) ( B ( J ) t J = l t M ~ )  

W R I T E I 3 t 3 0 0 7 1  
DO 5 0   K = l t K K  
K 2 =   1 8 + K  

20 I F ( K K - K ) 3 0 ~ 3 0 r 4 0  

10 CONTINUE 
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30 REA0(2r2004)(A(J)rJ=l~N%) 
W R I T E ( 3 r 3 0 @ 6 ) 1 A ( J I e J r l r N N )  
W R I T E ( 2 ' K 2 ) ( A ( J ) 9 J = l r N N )  
GO TO 50 

W R I l E ~ 3 r 3 0 0 6 ) ( A ( J ~ r J I l t N P l  
W R I T E ( 2 ' K 2 l ( A ( J ) r J = l r N P )  

R E A D f 2 r 2 0 0 3 ) ( C ( J I r J ~ I r N N )  
WRITE(3r3008)(C(JlrJ=leNN) 
R E A D I ~ I ~ O O ~ ) ( X F ( I ) ~ I I ~ ~ N P F )  
W R I T E f 3 e 3 0 0 9 ) f X F ( I ) r I = l r N P F )  
R E A D ( 2 r 2 0 0 3 ) ( R F ( I l r I I l r N P F )  
W R I T E ( 3 r 3 0 1 0 )   ( R F f  I ) r I = l r P I P F )  
R E A D ~ 2 r 2 0 0 3 l ( X 1 ~ I l r I = l ~ N X l )  
W R l T E ( 3 r 3 0 1 1 ) ( X l f I ) e I r l r N X 1 )  
R E A D ( 2 t 2 0 0 3 ) ( R l ( I ) r I I l r N R 1 )  
W R I T E ~ 3 r 3 0 1 2 ) ( R l ( I ) r I ~ l r N R l ~  
R E A D ( 2 ~ 2 0 0 3 ) ( X 2 ( I ) e I I l r N X 2 )  
W R I T E ( 3 r 3 0 1 3 ) f X 2 ( I ) t I r l t N X 2 )  
R E A D ( Z r 2 0 0 3 ) C C  
W R I T E ( 3 r 3 0 1 4 ) C C  
DO 60 L 1 1 ~ 8 0  

40 READ(2t2004l(A(J1rJ+l*NPl 

50 C O N T I N U E  

T A U l ( L ~ ~ C O S ( ( 2 ~ O + L - 1 ~ 0 ~ * 3 ~ 1 4 1 5 9 2 6 5 3 6 / 3 2 0 ~ 0 ~  
60 C O N T I N U E  

DO 70  L=1940 
T A U 2 ( L ~ ~ C O S ( ~ 2 ~ O * L ~ 1 ~ 0 ~ * 3 ~ 1 4 1 5 9 2 6 5 3 6 / 1 6 0 ~ 0 ~  

7 0  C O N T I N U E  
RETURN 

2 0 0 1   F O R M A T ( 3 1 5 )  
2 0 0 2   F O R M A T f 5 A 2 r F l O * O t 9 1 5 1  
2 0 0 3   F O R M A T ( 8 F l O . O )  
2004 F O R M A T ( 4 E 2 0 ~ 1 0 1  
3001 F O R M A T ( l H l / / / / '   P R I N T O U T   O F   I N P U T  F O R   S T R E A M L I N E   C O D E ' / / / l X t 3 1 5 / / 1  

*4HMM = * 1 3 / 1 0 X 1 4 H K K   = , 1 3 / 1 0 X t 5 H N P F   = r I 3 / 1 0 X 1 5 H N X l   = t 1 3 / 1 3 X * 5 H N R l  = e  
* 1 3 / 1 0 X # 5 H N X 2   = 1 1 3 / 1 0 X * 5 H N R 2  = t I 3 / / )  

3002 FORMATflX*5A2/10X97HLAMRA ~ 1 F 1 0 . 4 / 1 0 X 9 4 H N N   = t I 3 / 1 0 X * 4 H N P   = t I 3 / 1 0 X *  

3003 F O R M A T ( / / B H  RR e l O F 1 0 * 5 / 8 X ~ B F l O e 5 )  
3004 F O R M A T ( / / B H  CAPGM = t l O F 1 0 * 5 / 8 X t B F 1 0 ~ 5 )  
3 0 0 5   F O R M A T ( / / / / '   S H A P E   C O E F F I C I E N T S ' / )  
3006 F O R M A T ( b E 2 0 . 1 0 )  
3007 F O R M A T ( / / / / '  GAMMA C O E F F I C I E N T S ' / )  
3008 F O R M A T ( / / '  C (EXPONENTS  FOR G F U N C T I O N   W I T H   K = K K )   = ' / l l F 1 0 * 5 )  
3009  F O R M A T ( / / / / '   F I E L D   P O I N T S *   X = ' ( / l O F l 2 . 6 ) 1  
3010 F O R M A T ( /  ' F I E L D   P O I N T S 9   R = ' ( / l O F 1 2 0 6 ) )  
3011 F O R M A T I / / / / '   R E G I O N  1 MESH P O I N T S #   X ~ ' ( / l O F l 2 * 6 ) )  
3 0 1 2   F O R M A T ( /  ' R E G I O N  1 M E S H   P O I N T S I   R = ' f / l C F 1 2 * 6 ) )  
3013 F O R M A T ( / / / / '   R E G I O N  2 M E S H   P O I N T S 9   X = ' ( / l O F 1 2 . 6 ) )  
3014 F O R M A T I /  ' R E G I O N  2 UPPER  BOUND9  C= ' /F12 .6 )  

END 

SUBROUTINE P I N T G ( T A U t L L r X * R ~ N R e K K I P S f r L A M B A )  
REAL  LAMBA 
D I M E N S I O N   T A U ( l ) r R ( l I r P S I ( l )  
DO 10 I = l * N R  
P S I ( I ) = O * O  

DO 7 0  K = l r K K  
DO 60  L m l r L L  
I F ( X ~ O ~ 0 0 0 0 1 ) 2 0 r 2 0 e 4 0  

10 C O N T I N U E  
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20 5 1 = 2 . 5 * ( 1 . 0 + t A U ( L ) )  
5 2 = 2 0 5 * ( ? . 0 - T A U ( L ) )  
X l=S1**1.1+S1*S1*S1 
X 2 = S 2 * + 1 . 1 + S Z ~ ~ S 2 + 5 2  
T l n T T F C T ( K s X 1 )  
T Z - T T F C T ( K s X 2 '  
GAMlmGMFCT ( 2 9 K  ,X1 ) 
G A M Z = C M F C T ( ~ ~ K I X ~ )  
ROOT~SQRT(loO-TAU(L)**2~ 
T E R M l ~ R O O T * ( l r l * S l * * O ~ l + 3 . O + S 1 + S 1 ) + C A M 1  
TERM2~ROOT*ll.1+S2**0~1+3eO*S2*S2)*GAM2 
DO 30 I = l r N R  
P S I ~ I ) ~ P S I ( I I + T E R M ~ * G G F C T ~ X ~ ~ T ~ B X ~ R ( I ) ) + T E R M Z ~ G G F C T ( X ~ ~ T ~ ~ X ~ R ( I ~ ~  

30 CONTINUE 
GO TO 6 0  

40 S 3 = 2 e 5 * 1 1 e O + T A U f L ) )  
S 4 = 2 r 5 * ( 1 . 0 - T A U ( L ) )  
X l = X * ( l , O + T A U ( L ) ) / 2 r O  
X 2 t X * l l r O - T A U ( L ) ) / 2 r O  
X3=X+S3+S3*S3*S3 
X4=X+S4+54*S4+S4 
T l = T T F C T ( K , X l )  
T ~ = T T F C T I K I X ~ )  
T 3 = T T F C T (  K 9x3 I 
T 4 = T T F C T ( K t X 4 )  
G A M l r G M F C T f 2 e K 9 X l )  
G A M ~ = C M F C T ( Z ~ K I X Z ~  
GAM3=GMFCT(2 rK ,X3)  
G A M 4 = G M F C T ( 2 t K r X 4 )  
ROOT=SQRT(leO-TAU(LI**2) 
TERMl~ROOT+Om2*X*GAM1 
TERM2=ROOT*0.2+X*GAMZ 
TERM3~ROOT+fl~0+3rO*S3*S3)*GA.+l3 
T E R M 4 = R O O T + L l ~ 0 + 3 . O * S 0 + 5 4 ) + G A M 4  
DO 5 0  I = l t N R  
P S I ~ I ~ ~ P S I ~ l ) + T E R M 1 * C G F C T ~ X l ~ l l ~ X ~ R ~ I ~ ~ + T E ~ M 2 * G G F C T ~ X Z ~ T 2 ~ X ~ R ~ I ~ ~ +  * TERM3*GGFCT(X3rT3rXtR(I))+TERM4*GGFCT(X4*T4,X*R(I)) 

5 0  CONTINUE 
60 CONTINUE 
7 0  CONTINUE 

C O N S T ~ 2 a 5 * 3 0 1 4 1 5 9 2 6 5 3 6 / ( 2 . O + L L )  
DO 100 I p l g N R  
I F ~ A 8 S ~ R ~ I ~ ~ - O ~ 0 0 0 0 1 ~ 8 0 ~ 8 0 ~ 9 0  

GO TO 100 
80  P S I ( I ) = O . O  

90 PSI(I)=LAMRA*R(I)**2/2rO+CONST*PSI~I) 
100 CONTINUE 

RETURN 
END 

S U B R O U T I N E   O U T P T f I R E C * X ~ R * N R t P S I )  
D I M E N S I O N   R ( l ) r P S I ( l l  
D A T A   K X E Q L / ' X = l / r   K R E Q L / ' R = ' /  
Jl=l 
DO 40 I = l r N R 9 l O  
I F f J 1 + 9 - N R ) l O t 2 0 * 2 0  

GO TO 30  
10 J2=J1+9 

20 J 2 = N R  
30 W R I T E ( ~ ~ ~ O O ~ ) ( K X E Q L I X I J I J ~ ~ J ~ )  
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WRITE(3r300Z)(KREQLtR(J)rJ=JlrJ2) 
WRITE(3r3003)(PSI(J)rJ=JlrJ2) 
Jl=J2+1 

WRITEL3'IREC)IPSI(I)rI~lrNR) 
IREC=IREC+l 
RETURN 

40 CONTINUE 

3001 F O R M A T ( / 1 0 ( 2 X r A Z r f 7 r 4 r l X ) )  
3002 F O R M A T ( l D ( 2 X r A Z r F 7 . 4 , I X ) I  
3003 FORMAT(lOE12.5) 

END 

SUBROUTINE REGN1(IRECrNXlrNRlrX1rRlrPSI) 
DIMENSION  X1(20)rR1(20~rP(20rZO) 
DO  10  IX=l#NXl 
IREC=IREC+l 
READ(3'1REC)(P(IXrIR)rIR=lsNRl) 

IF~NX1-1)100r100r15 

DO 40 IRSlrNR1 
DO 30 IX=3rNX1 
CALL BETWN(P(IXrIR)rP(IX=l~XRlrPSIrKGO) 
GO TO ( 2 0 r 3 0 ) r  K G 0  

10 CONTINUE 

15  WRITE(3t30011 

20  CALL T H R P T ~ X l ~ I X - 2 ~ ~ X 1 ~ I X I l ) r X 1 ( I X ~ r P ~ I X - 2 r I R ~ r P ~ I X - l r I R ~ r P ~ I X r I R ~  
4b #PSI * X )  
WRITE13t3002lXrRl(IR) 

30  CONTINUE 
40 CONTINUE 

WRITE13r3003) 
DO 90 IX=lrNXl 
CALL BETWN(P(IXrZ)rP(IXrl)rPSIrKGO) 
GO TO ( 5 0 r 6 0 ) r  K G 0  

WRITE(3r3002)Xl(IX)rR 

CALL R E T W N ( P ( I X I I R ) B P ( I X I I R - ~ ) ~ P S I ~ K G O )  
GO TO 170r80)r KG0 

50 CALL T H R P T ~ - R 1 I 1 ~ r R 1 ~ l ~ r R l ~ 2 ~ r P ~ I X r l ~ ~ P ~ I X r l ~ ~ P ~ I X r 2 ~ ~ P S I r R ~  

60 DO 80 IRo3rNRl 

70 CALL T H R P T ~ R 1 ~ I R - 2 ~ r R 1 ~ I R I l ) r R 1 o r P ~ I R ~ r P ~ I X ~ I R - 2 ~ r P ~ I X r I R - l ~ r P ~ I X ~ I R ~  
it *PSI r R )  
WRITE(3r30021Xl(IX)rR 

80 CONTINUE 
90 CONTINUE 
100 RETURN 

3001  FORMAT(3OXr'REGION  10  AXIAL  SCAN') 
3002 F O R M A T ( ~ X I ~ H X = ~ F ~ . ~ ~ ~ X ~ Z H R = ~ F ~ O ~ )  
3003  FORMAT(30Xr'REGION l r  RADIAL SCAN') 

END 

SUBROUTINE R E G N ~ ( ~ R E C ~ N X ~ I N R ~ , X Z ~ R ~ ~ P S I ~ K K ~ C C )  
DIMENSION  X2(27)rR2(2O)rP(27r20) 
DO 10 IX=lrNXZ 
IREC=IREC+l 
READ(3'IREC)(P(IXrIR)rIR=l*NR2) 

IF(NX2-1)60r60r15 

WRITE(3t3001) 
DO 50 IXmltNXZ 

10 CONTINUE 

15  NRSCNINRZ-1 



T T = T T F C T ( K K r X 2 ( I X ) )  
DO 20 I R = l v N R P  
R 2 l I R ~ ~ T T + ~ C C ~ T T ~ * ~ I R ~ l ~ O ~ / ~ N R 2 - 1 . O )  

2 0   C O N T I N U E  
DO 40 IR t2 ,NRSCN 
C A L L  B E T W N ( P ( I X t I R ) r P ( I X r I R l l ) t P S I t K G O )  
GO TO 130r40)r K G 0  

30 C A L L  T H R P T ~ R 2 ~ I R + l ~ ~ R 2 ~ I R ~ r R Z ~ I R ~ l ~ r P ~ I X r I R + l ~ ~ P ~ I X ~ I R ~ r P ~ I X t I R ~ l ~  * *PSI rR 1 
W R I T E ( 3 t 3 0 0 2 ) X 2 ( I X ) r R  

40 CONTINUE 
5 0  CONTINUE 
60 RETURN 

3 0 0 1   F O R M A T ( 3 O X , ' R E G I O N  2, R A D I A L  S C A N ' )  
3 0 0 2  FORMATI3XrZHX=tF7e4t5Xr2HR=rF7e4) 

END 

SUBROUTINE THRPT(TlrTZ,T3rPlrP2rP3rPSIrV) 
CCOEF=(P3-Pl+~Tl-T3)*~Pl=P2)/(Tl-T2))/ (Tl*T2-Tl+T3-T2*T3+T3*T3) 
BCOEF+(Pl-P2)/LTl-TZ)-CCOEF*~Tl+T2) 
ACOEF~P1-BCOEF*Tl-CCOEF*Tl*Tl 
V~SQRT(BCOEF*RCOEF-4~O*CCOEF*~ACOEF-PSI)) 
VPLUS=-(RCOEF-V)/12rO*CCOEF) 
V M I N S E - I B C O E F + V ) / ~ ~ ~ O * C C O € F )  
C A L L   B E T W N ( T Z r T 3 r V P L U S r K G O )  
GO T O  ( 1 0 , 2 0 ) ,   K G 0  

10 V+VPLUS 
RETURN 

2 0   V n V M I N . 5  
RETURN 
END 

S U B R O U T I N E   R E T W N ( P l r P Z r P t K G 0 )  
D 1 2 = A B S I P 2 - P 1 )  
D l P = A B S ( P l - P )  
D 2 P = A B S I P 2 - P )  
I F ~ A B S ~ D 2 P + D 1 P - D 1 2 ) - O ~ O O O O O O O l ~ 1 O ~ l O r 2 O  

10 K G O = l  
RETURN 

20 KGO=Z 
RETURN 
END 
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C V E L O C I T Y   B O X   C O D E  
C 
C V F E L D  
C 
C A L L   I N P U T   F O R   T H E   V E L O C I T Y   B O X   C O D E  IS DONE I N  T H E   M A I N L I N E  PROGRAM. 
C I N P U T   V A R I A B L E S   A R E   A S   F O L L O W S  - 
c 
C V A R I A B L E   N A M E   D E S C R I P T I O N  c ""-"I"" 
C I M  TWO D I G I T  MONTH  OF  THE  YEAR 
C I D  TWO D I G I T   D A Y   O F   T H E   M O N T H  
C I Y  TWO D I G I T   Y E A R  . 
C K A S E   T E N   C H A R A C T E R   C A S E   I D E N T I F I C A T I O N  
C LAMRA  ADVANCE  RATIO 
C NN  NUMBER  OF  TERMS I N  VORTEX  DENSITY  FUNCTION  FOR  OUTER 
C VORTEX  TUBE 
C N P  NUMBER OF  TERMS I N  VORTEX  DENSITY  FUNCTION  FOR  INNER 
C VORTEX  TUBES 
C MM NUMBER OF TERMS I N  STREAM  FUNCTION 
C KK  NUMBER OF S T E P S  I N  T H E   P I E C E W I S E   C O N S T A N T   C I R C U L A T I O N  
C D I S T R I B U T I O N  
C RR R A D I A L   L O C A T I O N S   O F   S T E P S   I N   C I R C U L A T I O N   D I S T R I B U T I O N  
C C A P G M   P I E C E W I S E   C O N S T A N T   C I R C U L A T I O N   D I S T R I B U T I O N  
C B C O E F F I C I E N T S   I N   R E P R E S E N T A T I O N   O F   V O R T E X   T U B E   S H A P E  
C A C O E F F I C I E N T S   I N   R E P R E S E N T A T I O N   O F   V O R T E X   D E N S I T Y  
C  C EXPONENTS I N  M A T C H I N G   F U N C T I O N  FOR  VORTEX D E N S I T Y  ON 
C OUTER  VORTEX  TUBE 
C  X A X I A L   P O S I T I O N   F O R   C A L C U L A T I N G   V E L O C I T I E S  
C  R R A D I A L   P O S I T I O N   F O R   C A L C U L A T I N G   V E L O C I T I E S  
C 
C NOTES  ON  INPUT - 
C 1 I F  K K = l *   N P   N E E D  NOT B E   S P E C I F I E D  
C 

-_-""""""""""""""~"-~"""""""""""" 

REAL  LAMRA 
D I M E N S I O N  XI(l3O)rWT(130)tXLIM(l4)rGU(5)eGR(5) 
COMMON I M r I D r I Y t K A S E ~ 5 ) r L A M B A ~ N N e N P r M M r K K ~ I R E C l r I R E C 2 r  

* R R ( 1 8 ) r C A P G M ~ 1 9 ) ~ G M I N F ~ 2 ~ l 8 ) ~ A ~ l l ~ ~ B ( l O ~ e C ~ l l ~  
DATA X L I M / 0 o 0 0 0 ~ 0 o 0 0 1 ~ O o O l O ~ O o l O O r O o 5 O O ~ l o l O O ~ l o l 9 O ~ l ~ Z O O r l ~ 2 l O ~  * 1 o 3 0 0 ~ 2 ~ O C 0 ~ 1 0 o C 0 C r 5 0 o 0 0 0 ~ 2 C 0 o 0 9 0 /  

* 0 . 4 8 6 9 5 3 2 6 4 3 1  
DATA GR/0o1477621124~0o1346333597r0~1095431~13r0o0747256745~r * 0 0 0 3 3 3 3 5 6 7 2 1 5 /  
D E F I N E   F I L E   l ( l B r 3 2 r U r I R E C l ) r   t ( 3 6 e 3 3 e U r I R E C Z I  
R E A D ( 2 r 2 0 0 1 ) 1 M r I D 1 1 Y  
W R I T E ( 3 r 3 0 0 1 ) I M r I D r I Y  
R E A D f 2 r 2 0 0 2 ) ( K A S E ( I I ~ I = l r 5 ) r L A M e A , N N t N P t b ? M r K K  
W R I T E f 3 r 3 0 0 2 ) ( K A S E ( I ) r I ~ l r 5 ) r L A M e A I N N t N P r M ~ r ~ K  
READ(2r2003)(RRfK)rK*lrKK) 
W R I T E f 3 r 3 0 0 3 ) ( R R f K ) r K I 1 , K K )  
READ(2r2003)(CAPGMLK)rK=lrKK) 
WRITE(3t3004)(CAPGM(K)rK=lrKK) 
C A P G M f K K + l ) = O o O  
W R I T E f 3 e 3 0 0 5 )  
DO 10 K t l r K K  
READ(2r2004)(B(JIrJ=lrMM) 
WRITEf3r3006)(BfJ)rJ=lrMM) 
W R I T E ( 1 ' K ) f B f J ) r J l l r M M )  

W R I T E f 3 r 3 0 0 7 )  

D A T A  G U / 0 o 0 7 4 4 3 7 1 6 9 5 ~ 0 o 2 1 6 6 9 7 6 9 7 1 r 0 o 3 3 9 7 0 4 7 @ ~ 1 ~ ~ ~ 4 3 2 5 3 1 6 8 ~ 6 ~  

10 C O N T I N U E  
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DO 5 0  K + l r K K  
K 2 = 1 8 + K  

20 IF(KK-K)30r30t40 
30 READ(2r2004)(A(J)tJ=ltNN) 

W R I T E 1 3 t 3 0 0 6 ) ( A ( J ) t J P I , N N )  
WRITE(2'K2)(A(J)tJ+ltNN) 
GO TO 5 0  

W R X T E 1 3 t 3 0 0 6 ) ( A ( J ) r J = l r ~ P )  
WRITE(Z'K2)(AfJ)tJtltNP) 

READ(2t2003)IC(J)rJmltNN) 
W R I T E ( 3 r 3 0 0 8 )   ( C I J )   t J r l r N N )  
DO 60 L = l t 1 3  
D = X L I M ( L + l I - X L I M ( L )  
S=(XLIM(L+l)+XLIMIL))/2.0 
DO 58 I t l t l O  
I S U B = l O + ~ L - Z ) + I  
I F ( I - 5 ) 5 4 + 5 4 * 5 6  

5 4  X I l I S U B ) = S + D * G U ( I )  
W T ( I S U B ) + D * G R ( I )  
GO TO 5 8  

X I ( I S U R ) = S - D * G U f I E L V )  
W T ( I S U R ) = D * C R f I E L V )  

4 0  R E A D f 2 r 2 0 0 4 1 ( A ( J ) t J = I r N P )  

50 C O N T I N U E  

56  I E L V Z 1 1 - I  

58 CONTINUE 
60 CONTINUE 

CALL GAMIN 
W R I T E ( 3 t 3 0 0 9 )  

70 R E A D ( Z t 2 0 0 5 ) X t R  
I F ( R 1 9 9 9 t B O t 8 0  

80 C A L L  U V I N T ( X I t W T t l 3 0 r L A M B A , K K t X I R I U I V I Z E T A t T H E T A ~  
I F I R ) 9 9 9 t 9 0 t 1 0 0  

90 W R I T E 1 3 r 3 0 3 0 ) X t R r U  
GO TO 7 0  

GO TO 70 
100 W R I T E ( ~ ~ ~ ~ ~ ~ ) X B R ~ U ~ V , Z E T A , T H E T A ~ T H E T A  

999 C A L L   E X I T  
7001 F O R M A T ( 3 1 5 )  
2002 F O R M A T ( S A 2 t F l O * O t 4 1 5 )  
2003  FORMAT(8F10 .01  
2 0 0 4   F O R M A T ( 4 E 2 0 . 1 0 )  
2 0 0 5  FORMAT(ZF10 .0 )  
3001  F O R M A T ( l H l / / / / '   P R I N T O U T   O F   I N P U T  FOR V E L O C I T Y  BOX C O D E t / / / 1 X t 3 1 5 /  

* /  ) 
*4HMM = t 1 3 / 1 0 X t / )  

3002 FORMAT(lXt5A2/10Xt7HLAMBA = t F l O a 4 / 1 0 X r 4 H N N   = r I 3 / 1 0 X t 4 H N P  =~I3/10X, 

3003 F O R M A T ( / / B H  RR r l O F 1 0 * 5 / 8 X t 8 F l O . 5 1  
3004 F O R M A T ( / / 8 H  CAPGM = t l O F l O ~ 5 / 9 X t E F 1 C ~ 5 )  
3005 F O R M A T ( / / / / '   S H A P E   C O E F F I C I E N T S ' / )  
3006 F O R M A T ( 6 E 2 O e l O )  
3007 F O R M A T ( / / / / '  GAMMA C O E F F I C I E N T S ' / )  
3008 F O R M A T I / / '  C (EXPONENTS  FOR G F U N C T I O N   W I T H  K r K K )  = ' / 1 1 F 1 0 * 5 )  
7009 FORMAT~1Hlrl8Xt1HXr14XtlHRt24XtlHUtl9XrlHVtl6Xt4HZETAtl5Xt5HTHETA~ 
3010 F O R M A f ( F 2 0 . 5 ~ F l 5 ~ 5 ~ E Z 5 ~ 1 0 )  
3011 F O R M A f ~ F 2 0 ~ 5 t F 1 5 ~ 5 t E 2 5 r 1 0 , 3 E 2 0 ~ 1 0 ~  

END 
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SUBROUTINE UVINT(XItWTrLL*LAMRArKKtXrR*UrV*ZETAtTHETb.) 
REAL LAMBA 
D I M E N S I O N   X I ( l l r W T ( 1 )  
U=O.O 
V-0.0 
DO 40 K - 1 r K K  
DO 3 0  L - l r L L  
G A M ~ G M F C T ~ ~ ~ K I X I I L ) )  
D E L = ( X - X I ( L ) ) + + 2  
T = T f F C T ( K t X I ( L ) )  
I F I R ) l O t 2 0 t 1 0  

Z+((R-T)++2+DEL)/(ZrO*TTT) 
CALL  QQPMH(2tQPHrQMH) 
U I U + W T ( L ) + ( R * ( D E L + R * R - T + T ) * ~ P H + T * ( D E L + T + T - R * ~ ) * Q M H )  

V ~ V + W T ( L ) + ( X ~ X I ~ L ) ) + ~ ~ ~ ~ O + Z ) * Q P H - Q ~ H ) / ( ~ Z D ~ ~ ~ ~ ~ O ~ * S Q R T ~ T T T ~  

10 TTT=R*T  

it / ( 2 5 r 1 3 2 7 4 1 2 2 9 * S Q R f ( T T T * T f T + T t T ) ~ ~ * f ~ + Z ~ O ~ ~ ~ G A M  

+ Z * ( Z + 2 o O l ) * G A M  
GO TO 30  

20 U = U + W T ( L ) + f * T / S Q R T ( ( D E L + T * T ) * * 3 ~ * G A M  
30 CONTINUE 
40 CONTINUE 

5 0  U=LAMBA+U/R 
I F f R ~ 5 0 t l 0 0 t 5 0  

V=-V/R 
ZETA=SQRT(U+U+V+V)  

I F ( U ) 6 0 0 9 0 r 9 0  
60 I F ( V ) 7 0 t 8 0 t 8 0  

THETA=57 .29578*ATAN(V/U)  

70 THETA=THETA-lBOoO 
RETURN 

90 RETURN 

RETURN 
END 

80  THETA=THETA+180rO 

100 U=LAMBA+U/L.O 
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